The Optical Internet
Wavelength Division Multiplexing (WDM) and Lambda Switching

Mario BALDI
http://www.synchrodyne.com/baldi
Copyright Notice

This set of transparencies, hereinafter referred to as slides, is protected by copyright laws and provisions of International Treaties. The title and copyright regarding the slides (including, but not limited to, each and every image, photography, animation, video, audio, music and text) are property of the authors specified on page 1.

The slides may be reproduced and used freely by research institutes, schools and Universities for non-profit, institutional purposes. In such cases, no authorization is requested.

Any total or partial use or reproduction (including, but not limited to, reproduction on magnetic media, computer networks, and printed reproduction) is forbidden, unless explicitly authorized by the authors by means of written license.

Information included in these slides is deemed as accurate at the date of publication. Such information is supplied for merely educational purposes and may not be used in designing systems, products, networks, etc. In any case, these slides are subject to changes without any previous notice. The authors do not assume any responsibility for the contents of these slides (including, but not limited to, accuracy, completeness, enforceability, updated-ness of information hereinafter provided).

In any case, accordance with information hereinafter included must not be declared.

In any case, this copyright notice must never be removed and must be reported even in partial uses.
WDM: Wavelength Division Multiplexing

Transmission of multiple light signals (wavelengths) on the same strand of fiber

- **DWDM** - Dense WDM
 - More sophisticated → more expensive

- **CWDM** - Coarse WDM
 - Lower number of wavelengths → cheaper
Initial WDM Application

Increase transmission capacity of fiber

- Increase the utilization (ROI: return of investment) of [existing] fiber
- Point to point configurations
“Interim” WDM Application

Add/drop multiplexing

- Ring topologies with WDM add/drop multiplexers
 - Optical Add-Drop Multiplexer (OADM)
 - Inserting wavelengths on the ring
 - Extracting wavelengths from the ring

- Mostly static or semipermanent interconnection configurations
 - Reconfigurable OADM (ROADM)
Ultimate WDM Application

Wavelength switched networks

- Arbitrary mesh topologies of WDM links and wavelength switches
 - A.k.a. wavelength routers, lambda routers, lambda switches
 - Mostly ("only") optical cross connects
- Optical Switching – Wavelength switching
Wavelength Switching
What to do with Optical Switches?

= WDM Terminal

= IP Router or ATM Switch
Optical Switching

- Fiber cross-connect
 - the whole signal from an input fiber switched to an output fiber
 - Micro-electro-mechanical systems (MEMS)

- Wavelength cross-connect without wavelength conversion
 - one (or more) wavelengths from an input fiber to an output fiber
 - WDM de-multiplexer+MEMS
 - amplification before or/and after switching
 - OEO (optical-electrical-optical) conversion with electrical regeneration
 - optical amplification
Optical Switching

- Wavelength cross-connect with wavelength conversion
 - one (or more) wavelengths from an input fiber to other one (or others) on an output fiber
 - OEO (optical-electrical-optical) conversion with electrical switching
 - easier signal monitoring
 - forward error correction (FEC) possible to reduce Bit Error Ratio (BER)
Dynamic Optical Switching

- Wavelength switch without wavelength conversion
 - switch configuration is changed dynamically
 - by management
 - by time of day
 - every packet!?! …
 - WDM de-multiplexer+MEMS, electroholography, bubbles

- Wavelength switch with wavelength conversion
 - OEO (optical-electrical-optical) conversion with electrical switching
 - circuit switching (SONET/SDH)
\[\lambda \text{ Switching: the } N^2 \text{ Problem} \]

\[20 \lambda s = N \cdot (N-1) \approx N^2 \]
Wavelength Conversion

- Complex
 - OEO conversion
 - expensive
 - non data transparent \rightarrow does not scale
 - Does not require the same wavelength end-to-end

- No wavelength assignment problem
 - N^2 problem
IP over Glass? Not Exactly

- Demand for Virtual Networks
- Demand for Raw Bandwidth! Mesh restored
- **Fundamental Demand for Internet Applications**
- Demand for Ring Protection
What is Expected from the Optical Network?

- **Provisioning** and **protection** of lightpaths *end-to-end*
- Client equipment (e.g. routers) to provision optical layer lightpaths
- Cost-effective deployment of flexible networks
Provisioning

Step 1 - Request Bandwidth

Step 2 - Provide New Channel

IP Router

Optical Switch

Control Channel
Provisioning

Step 5 - Release Bandwidth

Step 6 - Disconnect Channel and Use Elsewhere

IP Router

Control Channel
Protection/Restoration

- Protection: pre-determined action
 - non-optimal resource utilization
- Restoration: dynamically determined action
 - optimization of resource utilization

Step 3 - Fiber Cut - Hold off

Step 4 - Restore Connection

Control Channel
Protection/Restoration

- Multiple levels of protection:
 - Layer 1 optical, e.g. SONET-like
 - Layer 2 data link bundle
 - Layer 2.5 protected MPLS LSPs
 - Layer 3 routing

- Can trigger multiple layers of restoration
 - each has different timescales for detection and repair

- Must avoid:
 - unnecessary traffic shifting
 - packet loss, reordering, control plane churn
 - pathological feedback
 - non self-stabilizing
Signaling: What Optical Switches Need

- Resource discovery
 - Topology
 - Access points and node identification
 - Resource usage

- Connection management
 - Lightpath setup
 - Lightpath take down
 - Lightpath modification

- Mesh/ring network protection and recovery
 - Distributed routing

- Establishment of protection service classes
Signaling: What Optical Users Need

- Resource discovery
 - Address of users reachable through the optical network

- Manage lightpaths
 - Lightpath setup
 - Lightpath take down
 - Lightpath modification

- Negotiate protection service classes
 - Protected, unprotected, best effort lightpaths

Does all this sound familiar? ATM
Signaling: How to Do It

- How is the optical layer controlled?
 - Layer 3 control plane?
 - MPLS/LDP?
 - LSPs mapped over wavelengths
 - OSPF, BGP4?
 - New signaling and routing standards?
 - Proprietary vendor specific?

- Out of band or in-band
 - Ethernet control channel