Ring versus Tree Embedding for Real-time Group Multicast

M. Baldi
Politecnico di Torino
Corso Duca degli Abruzzi, 24
10129 Torino - Italy
mbaldi@polito.it

Y. Ofek
Synchrodyne, Inc.
2600 Netherland Ave.
New York, NY 10463
ofek@synchrodyne.com

Abstract—In general topology networks, routing from one node to another over a tree embedded in the network is intuitively a good strategy, since it typically results in a route length of $O(\log n)$ links, being n the number of nodes in the network. Routing from one node to another over a ring embedded in the network would result in route length of $O(n)$ links. However, in group (many-to-many) multicast, the overall number of links traversed by each packet, i.e., the networks elements on which resources must be possibly reserved, is typically $O(N)$ for both tree and ring embedding, where N is the size of the group. This paper focuses on the tree versus ring embedding for real-time group multicast in which all packets should reach all other nodes in the group with a bounded end-to-end delay. In this work, real-time properties are guaranteed by the deployment of time-driven priority in network nodes.

In order to have a better understanding of the non-trivial problem of ring versus tree embedding, we consider the following group multicast scenarios: (i) static - fixed subset of active nodes, (ii) dynamic - fixed number of active nodes (i.e., the identity of active nodes is changing over time, but its size remains constant), and (iii) adaptive - the number and identity of active nodes change over time.

Tree and ring embedding are compared using the following metrics: (i) end-to-end delay bound, (ii) overall bandwidth allocated to the multicast group, and (iii) signaling overhead for sharing of the resources allocated to the group. The results are interesting and counter-intuitive, since, as shown, embedding a tree is not always the best strategy. In particular, dynamic and adaptive multicast on a tree requires a protocol for updating state information and coordinates the operation of the group. Such a protocol is not required on the ring where the circular topology, and implicit token passing mechanisms are sufficient. Moreover, the bandwidth allocation on the ring for the three multicast scenarios is $O(N)$; while on a general tree it is $O(N)$ for the static multicast scenario and $O(N^2)$ for the dynamic and adaptive multicast scenarios.

I. INTRODUCTION

There are two commonly used routing methods for broadcast/multicast: (i) in general networks, packets are forwarded to all the destinations over a tree embedded in the network, and (ii) in local area networks, packets are forwarded over a ring or a bus. This work presents a systematic comparison of the above two basic approaches in the context of real-time multicast in general networks. We do not deal with how to find the best ring and tree embedding; we assume that the embedding is given and the work focuses on determining which embedded structure has the most desirable properties. The objective of this paper is to increase the understanding of the real-time multicast problem, rather than provide a specific design for a specific network such as the Internet.

The underlying assumption of this work is that bandwidth is not a free commodity, and therefore, over allocation of bandwidth is not a desirable solution. This is especially true for real-time applications, such as voice and video, which require a lot of bandwidth, possibly on long haul links, and have better quality with more bandwidth. Accordingly, time-driven priority is taken into consideration as the underlying mechanism to guarantee real-time delivery of packets under full network load.

The following are some definitions which are useful throughout this study.

Network. A connected undirected graph, where all links are bi-directional. Each bi-directional link is considered as the union of two simplex unidirectional links.

Multicast group. A subset of N nodes of the network which are collectively addressed for the reception of packets sent by members of the multicast group.

Group multicast. An operation of many-to-many communications in a multicast group.

Fig. 1. Embedding of a Tree (b) over a General Topology Network (a); Embedding of a ring as Ring-on-Tree or Euler Tour on a Tree (c) and as Travelling Salesman Tour (d).

Active node. A member of the multicast group which is actually sending packets addressed to the group.

Tree embedding. The N member nodes of a multicast group, connected via an undirected tree that is embedded in the network.

Assumption 1: Ring embedding is an Euler Tour of the same embedded tree. This is also referred to as ring-on-tree.

The objective of the above assumption is to simplify the discussion. Consequently, in the following comparative study both tree and ring-on-tree have the same underlying topology, as shown in Fig. 1. The ring embedding can be made by having a travelling salesman tour of the N nodes, the ring-on-tree, with $2N-1$ nodes, is simpler to find and maintain. Without loss of generality, in order to simplify the discussion, the network nodes which are not part of the multicast group, in both tree embedding and ring embedding on a tree, are ignored.

Section II describes the basic operation principles of Time-driven Priority which is used to control the flow of real-time packets in the network and also used to define the comparison measures. Section III analyzes the real-time multicast scenarios for the embedded ring-on-tree case, while Section IV analyzes the more complex case of the embedded tree. Finally, Section V summarizes and discusses the outcome of this comparative study.

II. OPERATION PRINCIPLES AND COMPARISON MEASURES

In this sort of study, clear comparison measures are needed to obtain meaningful and insightful results. In order to provide a framework for the comparison, some specific operation principles should be defined. The context of this study is time-driven priority, which is appealing since it provides deterministic guarantees on end-to-end delay bounds and bandwidth with no packet loss due to congestion. Thus, it is possible to determine the quality of service as it will be perceived by the applications.

A. Time-driven Priority Operation

Time-driven priority (TDP) [1] can support flows at both constant bit rate (CBR) and variable bit rate (VBR) with a certain degree of periodicity in their traffic1. However, in this study it will be assumed that active nodes generate CBR traffic. Note that TDP supports also

1 Compressed video is an example of such a traffic; see [2] for further details on the transmission of MPEG compressed video using TDP.
“best effort” traffic that is transmitted with lower priority and without resource allocation.

To implement TDP it is assumed that a global common time reference is provided to the network. This time reference can be provided by an external global source like the global positioning system (GPS) [3], or can be generated and distributed inside the network with some in-band signaling, as proposed in [4], [5].

Some general concepts related to TDP are reported in the following:

Time Frames. Using the global time reference nodes divide time into *time frames* (*TF*s) of duration *T_f*. In each *TF* one or more packets or ATM cells can be transmitted (for example, if *T_f* = 125 µsec and the transmission rate is 1Gb/sec, about 290 ATM cells can be transmitted in every *TF*).

Time Cycle. *k* *TF*s are grouped in a *time cycle* which has a duration *k* ⋅ *T_f*. The *TF*s in a cycle are numbered from 0 to *k* − 1.

All arithmetic expressions involving *TF* numbers are meant to be modulo *k*, e.g., if *i* is a frame number, then (*i* + 1) mod *k*.

Active node transmission rate. It is determined by the number of data units (e.g., bits, bytes, cells) that can be sent in every time cycle, divided by the time cycle duration *k* ⋅ *T_f*.

TDP pacing conditions. The traffic over a route is said to be **TDP paced** if the following two conditions are true:

1. **Condition 1:** All packets that should be sent in *TF* *i* by a node are in its output port before the beginning of *TF* *i*.
2. **Condition 2:** The delay between an output port of one node and the output port of the next node is a constant number of *TF*s.

Note that this constant delay includes the propagation delay, routing delay and switching time. Without loss of generality in this work we assume the delay between the output ports of neighboring nodes to be 1 *TF*.

Definition 1: Time-driven priority immediate forwarding. Packets due at an output port in *TF* *i* are sent out in *TF* *i* + 1.

Delivery of a packet from the source to the destination traveling across *E* links takes 2 *E* − 1 *TF*s, since 1 *TF* is taken to travel on each of the *E* links (from an output port to the next output port) and 1 *TF* is spent in the output port of each of the *E* − 1 nodes (since the packet is sent in the *TF* following the one in which it arrived at the output port).

In order to enable TDP immediate forwarding the number of packets arriving at the output port of a node during each *TF* must be controlled, i.e., sessions must reserve resources (namely, *TF* fractions). Resource reservation with TDP requires to find a schedule. The impossibility of reserving resources even though they are available, but not during suitable *TF*s, is called **blocking**. In order to simplify the exposition, we assume that a *TF* can be used by only one active node.

Definition 2: Time frame allocation. A *TF* on a link is reserved for transmission by a node or a group of nodes.

Assumption 2: Resource allocation. (i) Only one resource allocation is done for each group multicast operation, which means that no separate allocation is made for individual active nodes. (ii) The resource allocation does not change during the multicast session.

Definition 3: Time frame assignment. At a certain point in time, a *TF* reserved to a multicast group is said to be assigned to the active node that is actually using it for transmission.

B. Performance Measures

The multicast performance over rings and trees is compared according to the following performance measures.

Definition 4: Network delay bound. The maximum delay in *TF*s experienced by a packet sent from any active node to any other member of the multicast group.

Definition 5: Resource allocated to a multicast group. The number, *B*, of allocated *TF*s per time cycle.

As shown in Section III, the amount of resources that must be allocated for multicast transmission over a ring is independent of the multicast method (static, dynamic or adaptive - see Section II-C). Thus, this amount of resources is taken as a reference in defining a comparison measure of resource allocation in the various cases. This leads to the following definition.

Definition 6: Reservation ratio. The ratio between the amount of *TF*s that must be allocated for a given embedding (ring or tree) and the amount of *TF*s needed for the transmission over a ring.

Definition 7: Updating state information or coordination complexity. The amount of state information that is exchanged during the group multicast operation to coordinate the usage of *TF*s among the active nodes.

Another possible comparison means is the schedulability or, dually, the blocking probability achievable with the given configuration. Even though a quantitative analysis of blocking probability is outside the scope of this work, some qualitative observations are made throughout the paper.

C. Methods of Real-time Group Multicast

We consider the size of the multicast group and the number and identity of its active sources as parameters in this comparison, since they affect the multicast performance.

Definition 8: Static Multicast. The number, *N_a*, and identity of active nodes is fixed during the multicast operation.

Definition 9: Dynamic Multicast. The identity of the active nodes changes over time, while their number, *N_a*, is fixed.

Dynamic multicast takes place, for example, in a conference call that allows a fixed number of speakers and a large number of listeners. The number of *TF*s each active node can use is determined during the setup of the multicast communication. Active nodes dynamically and fairly share the *B* *TF*s allocated to the multicast group: each active node uses *b* = *B*/*N_a* *TF*s. The identity within a time cycle of the *TF*s assigned to an active node are not necessarily the same over the duration of the multicast session.

Definition 10: Adaptive Multicast. (i) The number and identity of active nodes change over time.

(ii) The adaptiveness range is the minimum and maximum number of *TF*s per time cycle (i.e., capacity) an active node can use.

A typical scenario for adaptive multicast is a videoconference with a variable number of participants actively involved in a discussion. As the number of speaker increases, each source must decrease the rate of its transmission, and vice versa. In this study the adaptiveness range is [1, *B*], i.e., the number of active nodes, varies in the interval 1 ≤ *N_a* ≤ *B*.

III. PERFORMANCE OF RING-ON-TREE EMBEDDING

We start the discussion with the analysis of the ring embedding, or virtual ring, since it is simpler and helps in understanding the issues. Packets travel over the virtual ring-on-tree in one direction; since the number of tree nodes is *N*, the virtual ring size (i.e., the number of links constituting the ring) is 2(*N* − 1).

Resource allocation is the same for all three multicast methods. Due to the uni-directionality of transmissions over the ring, whenever an active node sends a packet it is forwarded on all links of the ring. In order to allow *N_a* active nodes to transmit during *b* *TF*s, *B* = *N_a* ⋅ *b* *TF*s per time cycle must be allocated on each link, independent of the instantaneous identity of the active nodes, and of whether they change over time or not. Thus, the allocation of *B* *TF*s per link enables both static and dynamic multicast. The same allocation is used also for the adaptive case; resources are allocated to the multicast group as a whole and as the number of active nodes changes, each active node uses from 1 (*N_a* = *B*) to *B* (*N_a* = 1) *TF*s.
A. Network delay bound

The time delay of the TFs assigned to the multicast group on its outgoing link, a coordination mechanism is needed to ensure fair sharing of the allocated TF among the active nodes. Transmission on a virtual ring enables exploitation of well experimented, simple, and effective mechanisms, as discussed in Section III-B.3.

B. Dynamic Multicast

B.1 Buffering Node

With reference to Fig. 3(a), TF 0 is reserved on node A’s outgoing link, and in order to enable immediate forwarding TFs must be reserved accordingly on all the other links of the ring. Immediate forwarding is possible along the whole ring because the network delay on all the links (in the following called ring length) equals the length of the time cycle. As a consequence, the packets transmitted during the TF allocated on the link between D and A get to node A by the TF before the one allocated on A’s outgoing link (i.e., TF 0). If the ring latency (8 TFs) was not an integer multiple of the time cycle (8 TFs), the TF allocated on A’s incoming link would not fit to the TF allocated on the outgoing link. As a consequence at least one of the nodes of the ring (A in our example) could not perform immediate forwarding.

Fig. 4(a) shows the allocation of 1 TF on the same ring with a longer time cycle of \(k = 10 \) TFs and Fig. 4(b) shows the forwarding of packets. Node A receives B’s packet by TF 7, but it has no TF reserved until TF 0 of the following time cycle; thus, node A buffers B’s packet until the next TF reserved for its multicast group. For this reason such a node is called a buffering node.

Definition 11: Buffering node. It is a node on a ring which does not perform immediate forwarding, in order to match the ring length and the time cycle duration.

Each ring may have a buffering node to adapt the length of the ring to the size of the time cycle [6]. Since the buffering node has particular buffer requirements, we assume that

Assumption 3: Only one buffering node is used on a virtual ring.

It must be noted that due to the presence of the buffering node, when more than one TF in each time cycle is reserved for a multicast group, a station does not necessarily receive back a packet by the same TF, (of the following time cycle) in which it transmitted it.
B.2 Network Delay Bound

Due to the presence of the buffering node, the delay bound for the multicast communication is larger than in the static case. Namely, it is given by the length of the ring, plus the maximum time spent in the buffering node. The maximum buffering time depends on the distribution of the allocated TFs inside the time cycle and on the relationship between the ring length and the time cycle size. The delay bound is given by:

\[D^\alpha_B = (4N - 5 + D_t)T_f, \]

where \(D_t \in [0,k] \) is the maximum buffering time given in terms of number of TFs and \(k \) is the size of the time cycle.

B.3 Updating State Information or Coordination Complexity

Dynamic multicast requires only the number \(N_a \) of active nodes to be known to each node in the group, so that it can devise its fair share of TFs it can use. This number does not change during the multicast session.

The dynamic assignment of the TFs to the nodes can be managed through implicit token passing. Thus, a TF sharing among the active nodes does not require the distribution of state information during the multicast session. Such a simple mechanism for a TF sharing in a dynamic multicast operation over a virtual ring was proposed in [6]. Each node knows the identity of the TFs reserved to the multicast group and the number of TFs, \(b \), it can use for transmission. When it becomes active, it transmits during the first \(b \) free TFs it identifies and continues transmitting during these TFs as far as it remains active. A TF \(i \) is said to be a free TF if (i) it is reserved to the multicast group and (ii) no packets addressed to the multicast group get to the output buffer by TF \(i-1 \). It is worth noting that there is no need to signal state changes: a node becoming passive simply stops transmitting, while a passive node waits to become active until it “sees” free TFs on the ring.

C. Adaptive Multicast

Packet forwarding is performed in a way similar to dynamic multicast and a buffering node is used when needed to match the ring length with the time cycle size. Thus, the delay bound for multicast transmission depends on the ring latency and on the buffering node delay (see Section III-B.2), i.e.

\[D^\alpha_B = D^\alpha_{buffer} = (4N - 5 + D_t)T_f. \]

Updation of State Information or Coordination Complexity

As it is in dynamic multicast, in adaptive multicast each active node to know the number \(B/N_a \) and the identity of the TFs it can use for transmission. The number \(N_a \) of active nodes changes during the operation of the multicast group and a protocol is needed to signal to all the active nodes whenever a node becomes active or passive\(^2\). Then, each source knows that it is allowed to transmit during \(B/N_a \) TFs and can identify the TFs assigned to itself by the implicit token passing method described in Section III-B.3.

In adaptive multicast, the share of allocated TFs \(B/N_a \) cannot be always an integer number; [6] proposes a simple algorithm to fairly and effectively assign the \(B \mod N_a \) spare TFs. Each active node takes static possession of \([B/N_a] \) TFs; the remaining TFs are periodically allocated to all the active nodes through an implicit token passing protocol that exploits circular nature of the ring.

IV. PERFORMANCE OF TREE EMBEDDING

A. Transmission on a Tree using Time-driven Priority

The following definitions are used in the evaluation of tree embedding performance:

\[R_S = N_a \cdot b(N - 1) = B \cdot (N - 1). \]

B. Static Multicast

B.1 Resource Allocation

There are \(N_a \) active nodes, and each requires \(b \) TFs to be allocated on its outgoing link(s) and a tree schedule to be found for each of the \(b \) TFs. Thus, \(N_a \cdot b \) TFs are reserved to the multicast group on each link and the total amount of allocated TFs is given by:

\[R_s^S = N_a \cdot b(N - 1) = B \cdot (N - 1). \]

B.2 Reservation Ratio

The reservation ratio of static multicast over a tree is given by:

\[\rho_r^S = \frac{R_s^S}{R_R} = \frac{B(N-1)}{2B(N-1)} = \frac{1}{2}. \]

\(^2\) Actually, through the implementation of an elaborate round-robin TF allocation algorithm, the protocol for signaling node state changes can be avoided. Nevertheless, as discussed in [6], this can result in decreased efficiency in the usage of network resources.

Fig. 5. Subtree Induced by Link DF

Definition 12: Induced subtree. Given a unidirectional link \(l \), the subtree that is consisting of all nodes reachable through \(l \) as the first hop is the subtree induced by \(l \) and it is indicated as \(T_l \).

Fig. 5 shows the subtree (thick line) induced by link DF (dashed line).

Deployment of TDP immediate forwarding requires a specific relationship between the TFs allocated on the incoming link of a node and the choice of the TFs allocated on all its outgoing links. If the set of \(b \) TFs \(T = \{t_1, \ldots, t_b\} \) is allocated on the incoming link of a node, the TFs \(T' = \{t_1 + 2, \ldots, t_b + 2\} \) should be reserved on each outgoing link\(^3\). Fig. 6(a) shows a sample allocation of TFs on some of the links of the tree depicted in that picture; the same line pattern is used to draw the TFs correlated by the deployment of TDP immediate forwarding.

A set of 3 TFs \(\{0,3,7\} \) is allocated on the link between D and F; TFs \(\{2,5,9\} \) are consequently allocated on F’s outgoing links, namely, those directed to H, I, and L.

Definition 13: Tree schedule. Given a TF allocated for transmission of node \(n \) over its outgoing link \(l \), its tree schedule is the collection of the TFs allocated on each link of the subtree induced by \(l \), chosen in a way that a packet sent by node \(n \) in the given TF is delivered with TDP immediate forwarding to all the nodes of the induced subtree.

Fig. 6(b) shows the tree schedule of TF 1 on the outgoing link of node I; the arrows wrapping numbers indicate the direction of the link in which the TF allocation has been performed. Active nodes transmit during TFs for which a tree schedule has been found, and the real-time properties of the communication are guaranteed by TDP immediate forwarding.

Network Delay Bound

For all three multicast methods the maximum delay over the tree when TDP immediate forwarding is performed is given by:

\[D_T = (2 \cdot H - 1)T_f, \]

where \(H \) is the diameter of the tree (in terms of number of links) which is on the order of \(\log N \) (\(N \) is the size of the multicast group).

Fig. 6. Scheduling of TFs on a Tree (a) and Sample Tree Schedule Starting from Node I (b).

\(^3\) In Section II-A it is assumed that the delay from the output buffer of the upstream node to the output buffers of the given node is 1 TF; thus, the delay between two successive forwarding of a packet is 2 TFs.
i.e., static multicast over a tree requires half the resources required over a ring embedded on the same tree. This is due to the fact that with ring-on-tree embedding each packet is forwarded in both directions of each tree link.

B.3 Updating State Information or Coordination Complexity

The only state information needed by an active (source) node for static multicast operation is the identity of the TFs it has been assigned on its outgoing link(s). This state information is set when the node begins operation and does not change over time; thus, no specific protocol or mechanism is needed to update state information.

C. Dynamic Multicast

The total amount of communications resources needed depends on the tree topology and the locations of the currently active nodes. Therefore, it is not possible to devise a closed form expression for the minimum resource allocation needed for dynamic multicast operation over a general tree - the state space is much too large, and the problem is made harder by conflicting scheduling requirements. We try to give an insight of the constraints that drive such a resource reservation and provide lower and upper bounds for the minimum resource allocation.

A lower bound for the allocation is first devised (Section IV-C.1) as the minimum allocation that allows any possible set of N_a active nodes to simultaneously transmit using reserved resources (i.e., during TFs allocated to the multicast group).

Then, the requirement for TDP immediate forwarding is brought in, thus raising the issue of scheduling over the tree (Section IV-C.2). It is proven that dynamic multicast with TDP immediate forwarding is not possible on every tree with the lower bound allocation.

The dynamic assignment of allocated TFs to active nodes is taken into consideration (Section IV-C.3); the lower bound allocation proves not to allow dynamic assignment. Moreover, we show that it is not always possible to find a schedule on every tree for any TF allocation which allows dynamic allocation. An upper bound on resource reservation is given and it is proven to both allow dynamic assignment and be schedulable on any tree. Then, the minimum allocation enabling dynamic multicast over a core based tree is given (Section IV-C.4). The section concludes by providing the reservation ratio (Section IV-C.5) and the control complexity (Section IV-C.6) for dynamic multicast over a tree.

C.1 Resource Allocation

A minimum number of TFs is allocated on each link to enable the nodes to transmit using reserved resources, thus obtaining a guaranteed service. b TFs are reserved on the outgoing link of each leaf so that when the node becomes active it can use them to transmit its packets. The TFs reserved on the links departing from passive nodes are not used, and the corresponding capacity can be exploited for carrying best-effort traffic.

A generic node of the tree receives multicast packets from its incoming links and forwards them on all the outgoing links. Besides forwarding packets received on its incoming links, a node must transmit its own with a guaranteed service when it is active. Thus, depending on the number of upstream nodes, more TFs are possibly allocated on its outgoing links.

Theorem 1: Given a unidirectional link l, the minimum number of TFs that must be reserved to the multicast group M on l to provide guaranteed transmission of packets sent by N_a active nodes during b TFs is given by b times the minimum between (1) the total number of multicast members not contained in the subtree induced by l and (2) N_a, i.e.,

$$B_{TF}^{DF} = \min \{M \setminus T_l \mid N_a\} \cdot b$$

Proof

Congestion of outgoing link l can be avoided if the number of packets that the transmitting node n_i can send on l during each time cycle is equal to or greater than the number of packets addressed to the multicast group it receives from all the incoming links during the time cycle. The delay experienced by packets in each node and the buffer space required to store the packets from when they are received, until they are forwarded, depends on the scheduling.

The number of multicast packets that n_i is expected to forward on l depends on the number of active nodes not contained in the subtree consisting on l. Since the set of active nodes changes over time and any member of the group can be active, the maximum number of active nodes not contained in the subtree consisting on l is $\lceil M \setminus T_l \rceil$. In any case, the total number of active nodes sending packets that traverse link l cannot be larger than N_a, the number of active nodes in the multicast group.

Since each node transmits during at most b TFs in each time cycle, the maximum number of packets that n_i can forward to link l during a time cycle is the minimum between $b \cdot N_a$ and $\lceil M \setminus T_l \rceil$. The total TF allocation is given by:

$$R_{TF, min}^{DF} = \sum_{l \in L} \min \{\lceil M \setminus T_l \rceil \cdot b, B\}$$

where L is the set of unidirectional links of the tree. $R_{TF, min}^{DF}$ is the lower bound on the allocation to perform dynamic multicast over a tree with controlled delay and loss. Fig. 7 shows a simple allocation of TFs assuming $b = 3$, $N_a = 3$, $M = 8$, and a time cycle of 10 TFs.

It is worth noting that if $N \geq N_a$ (as it is likely in large scale videoconferences), $R_{TF, min}^{DF} \approx N_a \cdot b = B$, and the total TF allocation on the tree is $R_{TF, min}^{DF} \approx N \cdot N_a \cdot b = N \cdot B$.

C.2 Scheduling

In order to enable TDP immediate forwarding for the multicast delivery, the order and identity of the allocated TFs, i.e., the schedule, must be properly chosen along the time axis.

Definition 14: Tree schedulable. A TF allocation to a multicast group is tree schedulable if it is large enough to allow, for each TF in the allocation, its tree schedule to be also included in the allocation.

Note that a TF can be part of more than one tree schedule. Moreover, tree schedulability is related to the size of the allocation, i.e., the number of allocated TFs, and not to their identity.

Tree schedulability is necessary to guarantee that when an allocated TF is used for transmission of a packet, the network will deliver the packet to all the members of the multicast group using TDP immediate forwarding. However, tree schedulability is not enough to enable multicast TDP immediate forwarding: the TFs must be chosen properly on the links. Note that the allocation given by Equation (1) is tree schedulable since it enables static multicast.

Theorem 2: The lower bound on the TF allocation $R_{TF, min}^{DF}$ (as given by Theorem 1) is not tree schedulable on every tree.

Proof

The proof is given by reduction ad absurdum, i.e., by showing a negative example. Considering a multicast group with a single active node ($N_a = 1$) and a single TF per cycle time needed by the active node for transmission (i.e., $b = 1$), only one TF shall be allocated to the multicast group on each link. Fig. 8(a) shows a simple tree topology on which the minimum TF allocation of 1 TF per link is not tree schedulable. A packet sent during the TF allocated on link ED (i.e., TF 0) cannot be forwarded on link DF using TDP immediate forwarding since TF number 2 is not reserved to the multicast group on link DF. In fact, TF 6 is allocated on link DF in order to allow TDP immediate forwarding of packets sent during TF 4 on link BD and TF 0 is reserved on link ED to enable packets to be TDP immediate forwarding during TF 2 on link DB.

In order for the allocation to be tree schedulable, two more TFs should be reserved to the multicast group: TF 2 on link DE and TF 2 on link DF, as shown in Fig. 8(b).
C.3 Dynamic Assignment of TFs

In order to limit the amount of resources reserved to the multicast group, the TFs allocated are dynamically assigned to the active nodes. Dynamic assignment is effective if it is possible to assign the same TFs to different nodes as the set of active nodes changes.

Definition 15: Dynamically assignable. A tree schedulable allocation is dynamically assignable if (i) for any possible set of \(N_a \) active nodes and (ii) independently of the tree topology, it is possible to assign to each active node (1) \(b \) TFs on its outgoing links and (2) the tree schedule of these \(b \) TFs, avoiding the same TF to be assigned to more than one active node at the same time.

It should be noted that dynamic assignability, as well as tree schedulability, is concerned only with the size of the allocation, i.e., with the number of allocated TFs, and not with the identity of TFs within each time cycle.

Dynamic assignability is necessary to enable dynamic multicast and can require a larger TF allocation than tree schedulability. Consider as an example the tree schedulable allocation shown in Fig. 9(a), which is not dynamically assignable to two active nodes (\(N_a = 2 \)), for each one is transmitted during one TF (\(b = 1 \)). In fact, if nodes A and D are active simultaneously, they should be both assigned TF 4 on link BC since it is the tree schedule of the only TF allocated on their outgoing links. Fig. 9(b) shows a dynamically assignable allocation for the same multicast group which requires reserving two more TFs.

The following corollary provides an upper bound on the minimum allocation enabling dynamic multicast over a tree.

Corollary 1: The allocation

\[
R_{f}^{D} = N \cdot b(N - 1) \text{ TFs}
\]

is tree schedulable and dynamically assignable.

Proof The corollary can be trivially proven by reducing the dynamic multicast of \(N_a \) active nodes among \(N \) group members, to static multicast of \(N \) active nodes (since each node can be potentially active). \(R_{f}^{D} \) is thus obtained from Equation (1) with \(N \) active nodes. □

Whenever the allocation \(R_{f}^{D} \) is used, no advantage is taken of the nature of the dynamic multicast, namely that no more than \(N_a \) nodes are active concurrently. The allocation given by Corollary 1 is a loose bound on a tree schedulable allocation. A tighter bound is devised in Section IV-C.4 for a Core Based Tree.

C.4 Core Based Tree

Each packet transmitted on a Core Base Tree (CBT) travels from the source to a node called the core, and from the core to the destinations, thus making tree schedulability easier to study and less demanding from the resource allocation viewpoint. In fact, the minimum TF allocation avoiding congestion in dynamic multicast on a CBT is tree schedulable, as proven by Theorem 3 below. Intuitively, the CBT is simpler to schedule since there is a single of time reference point, which is the core node, for packet forwarding from any source. In other words, the tree schedules for TFs allocated on the outgoing link of any source can be easily found starting from the core node.

The minimum TF allocation on each link \(l \) enabling guaranteed transmission from \(N_a \) active nodes is the one given by Theorem 1 for a generic tree. However, when applied to a CBT, the number of active nodes not contained in the subtree induced by each link directed from the core to the leaves is 0 and Equation (2) can be re-written as

\[
R_{C,BT,min}^{D} = \sum_{l \in L_{core}} \min\{|M \setminus T_l|, b\} + B(N - 1) \text{ TFs},
\]

where \(M \) is the multicast group, \(L \) is the set of unidirectional links in the tree, and \(T_l \) is the set of nodes in the subtree induced by the generic link \(l \). Fig. 10 shows the minimum TF allocation on a CBT with core F, 3 active nodes, and \(b = 2 \).

Theorem 3: The minimum TF allocation \(R_{C,BT,min}^{D} \) is tree schedulable on any CBT.

Proof Since each packet reaches the core before being forwarded to the members of the multicast group, the core can be seen as a static source of all the traffic addressed to the group. The total amount of bandwidth allocated from the core for transmission to the group is \(b \) TFs; hence the overall TF allocation is given by \(B(N - 1) \), in accordance to Equation (1), which guarantees tree schedulability from the core to the leaves. There is the additional constraint that identity within the time cycle of the TFs must be the same on all the core’s outgoing links.

\[
\min\{|M \setminus T_l|, b\} \text{ TFs are allocated on each link on the path from the leaves to the core in a way such that their tree schedule includes the } B \text{ TFs reserved on the core’s outgoing links. It is always possible to build this tree schedulable allocation starting from the core (assuming that resources are available on the links) because the path from the leaves to the core is a linear one. Thus, given the set of TFs reserved on the core’s outgoing link } \{t_0, \ldots, t_{N_a - 1}\}, \text{ the TFs } \{t_0 + 2, \ldots, t_{N_a - 2}\} \text{ are reserved on the upstream link. In general, given a link which is } h \text{ hops from the core, the TFs } \{t_0 - 2(h + 1), \ldots, t_{N_a - 2} - 2(h + 1)\} \text{ must be allocated on it.}\]

\[
R_{C,BT,min}^{D} = 2B(N - 1) \text{ TFs}
\]

is tree schedulable and dynamically assignable on any CBT.

Proof The proof can be given in a way similar to what is done for general trees in Section IV-C.3 by showing a sample minimum allocation which is not dynamically assignable. Fig. 11 depicts a minimum TF allocation for \(b = 2 \) and 3 active nodes; node N and node M cannot be active at the same time, i.e., then the allocation is not dynamically assignable. □
Theorem 6: The allocation
\[R_{CBT}^D = B(2N - N_a - 1) \] TFs
is tree schedulable and dynamically assignable on any Core Based Tree having at least \(N_a \) leaves.

Proof \(B \) TFs are allocated on each link from the core to the leaves leading to an overall allocation of \(B(N - 1) \) TFs. Dynamic assignability can be obtained by having \(N_a \) leaves which are assigned in a fixed manner \(N_a \) different sets of \(b \) TFs.

Given each of these \(N_a \) leaves, the TFs \(\{T_0, T_1, \ldots, T_{N_a - 1} \} \) are allocated on each link on the path from the leave to the core, where \(b \) is the number of hops from the considered link to the core. The allocation considered so far guarantees that the \(N_a \) leaves can be active concurrently.

In order to allow any other node \(n \) to become active at the same time as \(N_a - 1 \) of the above leaves, it must be possible to assign \(n \) any subset of the \(B \) TFs allocated on the core’s outgoing links. Thus, \(B \) TFs must be reserved on the path from \(n \) to the core in the way described in the proof of Theorem 3. As a consequence, \(B \) TFs are allocated on each of the \((N - 1) \) links towards the core, with the exception of the outgoing links of the \(N_a \) leaves above; on those links only \(b \) TFs are reserved.

Thus, the total allocation is given by:
\[N_a \cdot b + B(N - 1 - N_a) + B(N - 1) = B(2N - N_a - 1). \]

\(\square \)

Fig. 12 shows a minimum tree schedulable and dynamically assignable TF allocation on a CBT with core \(F \), \(b = 2 \), \(N_a = 3 \), and \(k = 10 \).

C.5 Reservation Ratio

The reservation ratio is devised for the upper and lower bounds of the resource allocation that enable TDP immediate forwarding over a tree. The upper bound of the reservation ratio is obtained from Equation (4) as
\[\rho_{CBT}^U = \frac{N_a \cdot b(N - 1)}{2B(N - 1)} = \frac{N_a}{2N_a}. \]

The upper bound of the reservation ratio is directly proportional to the number of members in the multicast group. If more than half of the members are active (\(N_a > N/2 \)), the resource allocation on a tree is smaller than on a ring (\(\rho_{CBT}^U < 1 \)). Otherwise, when active nodes are less than half of the members (\(N_a > N/2 \)), the ring may possibly require less resources than the tree (\(\rho_{CBT}^U > 1 \)). In essence, the tree is the most effective structure if the subset of active nodes is large.

\(\rho_{CBT}^U \) shows that the upper bound on the reservation ratio increases with the dimension of the group and suggests that dynamic multicast is less expensive over a ring when the multicast group is large. The lower bound on the allocation for large groups \(\overline{R}_{CBT}^D \) given in Equation (3) is used to devise a lower bound on the reservation ratio
\[\rho_{T_{CBT},min}^D = \frac{N_a \cdot b(N - 1)}{2B(N - 1)} = \frac{1}{2}. \]

Thus, we can conclude that the relative cost (in terms of allocated resources) of tree versus ring embedding for large scale dynamic multicast depends on the topology of the structure (and thus, finally, of the underlying network).

Considering dynamic multicast over a CBT, the upper bound of the reservation ratio is devised from Equation (5) as

\[\rho_{CBT}^D = \frac{B(2N - N_a - 1)}{2B(N - 1)} = \frac{2N - N_a - 1}{2(N - 1)} \]

Thus, dynamic multicast with \(N = N_a \) over a CBT requires half the resources required over a ring, for any possible embedding of the ring as an Euler tour of the ring. As the size of the group increases with respect to the number of active nodes (\(N >> N_a \)), \(\rho_{CBT}^D \) asymptotically approaches 1.

It is worth noticing that if the ring is embedded as a traveling salesman tour among the members of the multicast group, the size of the ring is half and thus the reservation ratio is always greater than 1 (i.e., the ring requires less resources than the CBT).

C.6 Updating State Information or Coordination Complexity

The state information needed to operate dynamic multicast over a tree encompasses the identity of (1) the TFs allocated to the multicast group on the outgoing links of each node, and (2) the \(b \) TFs each active node is assigned for the transmission of its data. The first piece of information is distributed at the beginning of the operation of the multicast group and is not changed over time. The second one has to be updated each time the identity of the active nodes changes. A signaling protocol must be used to allow nodes which change state (from active to passive and vice versa) to notify all the other nodes and to enable the distributed assignment of TFs.

In principle, the active nodes which do not change their state do not need to change their TF assignment. In fact, when a node becomes active, there is always another node turning passive; the former could take over the TFs previously assigned to the latter. However, the TF allocation that enables this way of operation may be larger than one that requires the reconsideration of TF assignments to all the nodes whenever two of them modify their status.

D. Adaptive Multicast

Since it is possible that only one node is active, each group member must be enabled to transmit up to \(B \) TFs. Thus, \(B \) TFs are allocated on every outgoing link of each group member. The same number of TFs must be allocated also on every incoming link and the total TF allocation is given by (1) \(R_{T, min}^A = 2B(N - 1) \). \(R_{T, min}^A \) is a lower bound on the TF allocation enabling adaptive multicast. A TF allocation must be both dynamically assignable and tree schedulable on any tree to enable adaptive multicast with guaranteed quality of service.

Corollary 2: The allocation
\[R_{T, min}^A = 2B(N - 1)/TFs \]
is not tree schedulable on every tree.

Proof \(\bullet \) Fig. 13 shows the minimum TF allocation on a sample tree where \(N = 6 \) and \(B = 6 \); thus, 6 TFs are allocated on each link for a total of \(2 \cdot 6(6 - 1) = 60 \) TFs. The allocation is not tree schedulable because not all the TFs allocated on link FD have their tree schedules included in the allocation. The portion of tree schedule on link DE is missing since the TFs reserved on link DE are chosen in order to
accommodate the tree schedule of the TFs allocated on the links BD, AB and CB.

A larger TF allocation (12 TFs more) is needed to guarantee tree schedulability on the tree given in Fig. 13.

Theorem 7: The allocation

$$R^A_{C_{BR}} = 2 \cdot B \cdot (N - 1)/2 \text{TFs}$$

(6)

is tree schedulable on any CBT and dynamically assignable for a variable number of active nodes, i.e., it enables adaptive multicast.

Proof: Theorem 5 states that the above allocation (called $R^A_{C_{BR},dynam}^C$) in that theorem is dynamically assignable for a dynamic group of N_a active nodes. Since the number of allocated TFs does not depend on the actual number of active nodes, the allocation is dynamically assignable for any number of active nodes $N_a \leq N$. □

Corollary 3: The allocation

$$R^A_{T} = N \cdot B \cdot (N - 1)/2 \text{TFs}$$

(7)

is tree schedulable on any tree and dynamically assignable for a variable number of active nodes.

Proof: Equation (7) is derived from Equation (4) assuming $b = B$, i.e., $N_a = 1$.

Thus, Corollary 1 assures tree schedulability and dynamic assignability for dynamic multicast with 1 active node. If $N_a > 1$, each active node is using less then B TFs. Since each source could use any of the B reserved TFs on its outgoing link, it chooses any $b = B / N_a$ of them to transmit its data. Tree schedulability and dynamic assignability are maintained since they do not depend on whether the number of active nodes changes over time. □

D.1 Reservation Efficiency

The upper bound on the reservation ratio to perform adaptive multicast over a general topology tree can be devised from Equation (7) as

$$\rho^A_{T} = \frac{N \cdot B(N-1)}{2B(N-1)} = \frac{N}{2}$$

ρ^A_{T} shows that the upper bound of the reservation ratio for adaptive multicast is directly proportional to the size of group. Thus, the ring is more convenient than the tree in terms of required resources, especially for large multicast groups.

The reservation ratio over a CBT is $\rho^A_{C_{BR}} = 1$, as devised from Equation (6): the amount of resources required to perform adaptive multicast over a CBT and a ring is the same.

D.2 Updating State Information or Coordination Complexity

Adaptive multicast requires the same state information as dynamic multicast. The number of active nodes is changing over time, and thus, the TF assignment of each active node changes whenever a node changes its status. A signaling protocol must be used to allow nodes which change status (from active to passive and vice versa) to notify all the other active nodes and to coordinate the distributed assignment of TFs. Such a protocol is critical since the correct set of TFs must be assigned to all the active nodes; if any of the active nodes fails to get the state information update, the operation of the whole multicast group may be disrupted.

Moreover, as the number of active nodes N_a changes over time, the fair share of resources reserved to the multicast group (B / N_a) can be a non-integer number of TFs. As a consequence, to guarantee maximum fairness, the protocol should be able to assign $[B / N_a]$ TFs to each node and alternately assign the remaining TFs to all the active nodes.

This requires the active nodes to exchange control information when the set of active nodes is not changing. Instead, as it was discussed in Section III-C, sharing one TF among multiple active nodes over a ring is simple.

V. Comparison Summary and Discussion

Real-time group multicast (many-to-many) with deterministic quality of service guarantees is a challenging problem. In this paper we study this problem in the context of time-driven priority with immediate forwarding. Specifically, the main objective of this manuscript is to increase the understanding of the real-time multicast problem in two basic network configurations: (i) tree embedding - the approach popular on general networks, and (ii) ring embedding - the approach used in local area networks. The work focused on increasing the understanding of the tree versus ring embedding, rather than attempting to provide a specific design for a specific network, such as the Internet.

In order to provide a comprehensive evaluation of ring versus tree embedding, the following multicast scenarios were investigated: (i) static - fixed subset of active nodes, (ii) dynamic - fixed number of active nodes (i.e., the subset of active nodes is changing over time, but its size remains constant), and (iii) adaptive - the number and identity of active nodes change over time. The results are interesting and often counter-intuitive, since, as it was shown, embedding a tree is not always the best strategy. In particular, dynamic and adaptive group multicast on a tree requires a signaling protocol for updating state information and coordinating the operation of the group during the communication and not only during the setup phase. Such signaling protocol is not required on a ring where the circular topology with simple implicit token passing is sufficient; this is summarized in Table I. Moreover, as summarized in Table II, the bandwidth allocation on the ring for the above three traffic scenario is $O(N)$; on the tree it is $O(N)$ only for the static traffic scenario, while for dynamic and adaptive multicast it is $O(N^2)$. Only if a core based tree is used, then dynamic and adaptive multicast requires a bandwidth allocation of $O(N)$.

References

Table I

Sharing of State Information Among Group Members.

<table>
<thead>
<tr>
<th></th>
<th>Ring</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Multicast</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Dynamic Multicast</td>
<td>None</td>
<td>- Identity of assigned TFs</td>
</tr>
<tr>
<td>Adaptive Multicast</td>
<td>- Number of active nodes</td>
<td>- Identity of assigned TFs</td>
</tr>
</tbody>
</table>

Table II

Resource Allocation to Multicast Groups.

<table>
<thead>
<tr>
<th></th>
<th>Ring</th>
<th>Tree</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Multicast</td>
<td>$2N_a \cdot b(N-1)$</td>
<td>$N_a \cdot b(N-1)$</td>
</tr>
<tr>
<td>Dynamic Multicast</td>
<td>$2N_a \cdot b(N-1)$</td>
<td>$N_a \cdot b(N-1)$</td>
</tr>
<tr>
<td>Adaptive Multicast</td>
<td>$2N_a \cdot b(N-1)$</td>
<td>$N_a \cdot b(N-1)$</td>
</tr>
</tbody>
</table>

Fig. 13. Minimum TF Allocation for Adaptive Multicast.