LAN interconnection

Telecommunication Networks Group
firstname.lastname@polito.it
http://www.telematica.polito.it/

Copyright

• Quest’opera è protetta dalla licenza Creative Commons NoDerivs-NonCommercial. Per vedere una copia di questa licenza, consultare http://creativecommons.org/licenses/nd-nc/1.0/ oppure inviare una lettera a: Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

• This work is licensed under the Creative Commons NoDerivs-NonCommercial License. To view a copy of this license, visit: http://creativecommons.org/licenses/nd-nc/1.0/ or send a letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.

LAN Interconnection

• Needed to
 – Extend LAN physical size
 – Increase the number of access nodes
 – No need to modify protocol architecture

• May increase LAN throughput performance
 – More space diversity
 – Exploits traffic locality
Interconnecting devices

- Repeater or Hub (layer 1)
 - Not an interconnecting device
 - Permit to extend cable lengths
- Bridge or Switch (layer 2)
 - Simple routing algorithms
 - Work only on loop free topologies
- Router (layer 3)
 - Complex routing algorithms
 - Any topology
- Gateway (layer 4-7)
 - Useful to interconnect networks with different layering structure

Repeater or Hub

- Multi-port device
- Operates at the bit level (layer one)
- Extend cable length
 - No increase in network capacity
- Regenerates strings of bit and forwards them on all the ports
- Shared bandwidth on all ports
- 3R: re-generation, re-shaping, re-timing
 - May introduce delays
- Repeaters
 - On coaxial cable
 - Tree-like topology (interconnected buses)
- Hubs
 - Structured cabling (ease cabling and maintenance)
 - On twisted-pair or fiber
 - Star based topology
Bridge or Switch

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

Bridge

- Application
- Presentation
- Session
- Transport
- Network
- Data Link
- Physical

These are Layer 2 devices:
-Operate on layer 2 addresses
-From one segment LAN to extended LANs
-Interconnect segments of LANs
-Enable to increase the network size
-Store and forward devices
-Dedicated bandwidth per port
-Transparent to users (same behaviour with or without bridge/switch)
-Do not modify packet content
-Limited routing capability
-Backward learning algorithm (see later)

Bridge/Switches

- Bridge
 - Operates on coaxial cable
 - Interconnect LANs, possibly with different MAC
 - Run the spanning tree protocol (see later)

- Switches
 - Operates on twisted pair
 - Interconnect LANs (or single users) with the same MAC
 - Support VLANs
 - Sometimes do not run the spanning tree protocol (see later)
Bridge/Switch

- Packets received on LAN 1 are transmitted on LAN 2 only when needed

![Diagram of Bridge/Switch]

Bridge/switch operations

- Focus on transparent bridging
- Each bridge/switch has a unique ID
- Each bridge/switch port has a unique id
- Forwarding tables are initially empty
- Three fundamentals functions:
 - address learning: to dynamically create a routing (forwarding) table at the MAC layer (MAC Address, port id)
 - frame forwarding: forward packets depending on the outcome of the routing table look-up
 - spanning tree algorithm execution to operate on a loop-free (tree) topology

Address learning

- Exploits the backward learning algorithm
- For each received packet
 - Read the source MAC address MAC_S to associate the address with the port PORT_X from which the packet has been received
 - Update timer associated to the entry (MAC_S, PORT_X)
 - Will later use PORT_X to forward packets to MAC_S
- Timer needed to automatically adapt to topology variations and to keep the table size small
Frame forwarding

- When a correct packet (wrong packets are dropped) with a unicast MAC_D destination address is received on PORT_X
 - Look for MAC-D in the table
 - If found and associated to PORT_X, drop the packet
 - If found and associated to port_Y, forward to PORT_Y
 - If not found, forward to any other output port except PORT_X
- If the packet has a multicast/broadcast address
 - Forward to any port except PORT_X

Spanning tree

- Needed to avoid loops
 - Build a logical tree topology among bridges/switches by activating/de-activating ports
- Some switches may not support the spanning tree
 - Need to interconnect in a loop-free physical topology

Backward learning over a loop
Backward learning over a loop

- Q transmits to X \Rightarrow
 - B1 and B2 receive the packet and assume that Q can be reached using port B
- If B1 and B2 have the MAC address of X in the forwarding table
 - B1 sends the packet on port A \Rightarrow
 - B2 assumes that Q can be reached using port A (true, but via a loop)
 - B2 sends the packet on port A \Rightarrow
 - B1 assumes that Q can be reached using port A
- Thus
 - X receives two copies of the packet
 - B1 and B2 are unable to reach Q

Backward learning over a loop

- Q sends to X \Rightarrow
 - B1 and B2 receive the packet and assume that Q can be reached using port B
- If the MAC address of X is NOT found in the forwarding tables
 - B1 sends the packet on port A \Rightarrow
 - B2 assumes that Q can be reached using port A (true, but via a loop)
 - B2 sends the packet on port A \Rightarrow
 - B2 assumes that Q can be reached using port A (true, but via a loop)
- B1 and B2 keep sending packets forever

Bridge/Switch properties

- From a multiple-access network to a multiplexed network
 - Reduce collision probability by partitioning the network in independent segments
- For a full duplex fully switched network
 - Ethernet becomes a framing and transmission technique alternative to LAP-B, LAP-F, ATM
 - The MAC layer becomes useless
 - Physical distance limitations induced only by the media transmission properties, not by the MAC
- Ease security and management
 - Traffic separation
Bridge/Switch properties

- Throughput performance may increase
 - More space diversity (higher capacity)
 - Need to exploit traffic locality
- Introduce store and forward (and queueing) delays
 - Worse delays than hubs
 - Store and forward delay significant with respect to propagation delay
 - Transmission time of a minimum packet size at least twice of the propagation delay
- Potential packet losses when queues are filled-up
- Unfairness in resource access

VLAN (Virtual LAN)

- Host are physically connected to the same network segment, but logically separated
- Broadcast/multicast packets forwarded only on ports belonging to the VLAN
- Need to extend the PCI MAC to identify packets as belonging to a specific VLAN
- Hosts belonging to separate VLANs cannot directly exchange packets

Virtual LANs

- (a) 4 LAN segments organized as 2 VLANs (white and grey) through two bridges
- (b) similar scenario with two switches
The IEEE 802.1Q Standard

- From legacy Ethernet to Ethernet with VLANs

IEEE 802.1Q

- 802.3 Packet format (legacy) € 802.1Q.

Hierarchical LAN organization

- Dedicated network
- Shared network

- To internet
- 10BaseT
- 10BaseT
- 10BaseT

- Electrical Engineering
- Computer Science
- Systems Engineering
Router

- Layer 3 (network) device
 - Routes on the basis of layer 2 addresses
- Often multiprotocol

Gateway

- Interconnection among networks with different layered architectures
- In the worst case operate above layer 7 in the OSI model
- Example: gateway for mailing systems with different architectures