Transmission media

- Electrical
 - Unshielded/shielded twisted pair
 - Coaxial cable
- Optical
 - Optical fiber
 - Laser
- Radio
 - Radio link (antennas) for point-to-point communication
 - Satellite
 - Cellular network
 - Wi-Fi

Electrical media characteristics

- Optimal media characterized by
 - Resistance, capacities and impedance
 - Traction resistance
 - Flexibility
- Electrical media characteristics depend on
 - Geometry
 - Number of cables and their distance
 - Material used for isolation
 - Shielding type

Parameters for electrical media

- Impedance (as a function of frequency)
- Signal propagation speed in the media (0.5c-0.7c for cables, 0.6c for fiber optics)
- For a given frequency, we report below
 - Attenuation (linearly increasing, in dB, with distance and with the square root of frequency)
 - Cross-Talk (noise introduced by adjacent cables – increases with the distance and then saturates)

Twisted pair

- Also simply named pair
- Used in the access segment of telephone networks
- Two copper conductors twisted to reduce electromagnetic interference using differential transmission techniques
- Low costs and ease of cabling
RJ45 connector (Ethernet)

Coaxial cable

• One central connector plus one or more covers to protect against electromagnetic interference
• Reduced interference thanks to its schielding properties (Faraday cage)
• Higher cost, complex cabling
• Transmission speed ~ hundreds of Mbit/s
• Two dominant types
 – Oscilloscope cable
 – TV cable (RG-59)

Fiber optic

• Very thin and flexible glass-based conductor composed by two parts (core and cladding) with different refraction index
• According to Snell law, the luminous ray (generated by a LED or by a laser) inserted in the fiber is restricted to propagate in the core if the incident angle is below a given threshold

Fiber optics

• Advantages
 – Immune to electromagnetic interference
 – High available bit rate (tens of Terabit/s)
 – Low attenuation (~0.1dB/km) see next slide
 – Relatively low cost and reduced size
• Disadvantages
 – Can be used only for point to point connections
 – Difficult to connect
 – Difficult to align transceivers
 – Not easy to lay
 – Suffers vibration

Fiber attenuation

UTP

• The Unshielded Twisted Pair is used in both telephone and data networks
• Seven categories of increasing transmission quality
• Category 7 with shielded twisted pair

Coaxial cable

• One central connector plus one or more covers to protect against electromagnetic interference
• Reduced interference thanks to its schielding properties (Faraday cage)
• Higher cost, complex cabling
• Transmission speed ~ hundreds of Mbit/s
• Two dominant types
 – Oscilloscope cable
 – TV cable (RG-59)
Submarine cables

- Amplifiers needed every 30/50 Km
- Each amplifier is backed up
- Need to transport also power supply over the cable
- Costly and time consuming maintenance

Radio (Ether)

- Environment may affect signal propagation
 - Interference for multiple paths created by reflected signal
 - Fading (quick signal amplitude variation due to the in phase combination of “copies” of the same signal)
 - Natural obstacles
 - Shadowing (slow signal amplitude variation)
 - Co-channel interference
 - May suffer for atmospheric phenomena (fog, rain, clouds)
 - Signal attenuation is a function of the squared distance

Transport and access networks

- Access network is the portion of the network including
 - Devices and transmission media that connect the user to the access node of the service provider network
- Transport network comprise
 - Devices and transmission media managed by one or more service providers connecting networks nodes
 - Metro and core segments

Plesiochronous Digital Hierarchy

- Plesiouchonous Digital Hierarchy (PDH) was the standard for digital transmission in telephone networks
- Time Division Multiplexing scheme
 - Defined to transfer 64kbit/s voice channels
 - Avoids Store-and-Forward
 - Strict synchronization between TX and RX is needed
 - Almost synchronous behaviour (plesio-synchronous)
 - Different standard in USA/Europe/Japan
 - Creates interface and interoperability complexity

T and E hierarchies

<table>
<thead>
<tr>
<th>Layer</th>
<th>America (T-)</th>
<th>Europe (E-)</th>
<th>Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.064 Mb/s</td>
<td>0.064 Mb/s</td>
<td>0.064 Mb/s</td>
</tr>
<tr>
<td>1</td>
<td>1.544 Mb/s</td>
<td>2.048 Mb/s</td>
<td>1.544 Mb/s</td>
</tr>
<tr>
<td>2</td>
<td>6.312 Mb/s</td>
<td>8.488 Mb/s</td>
<td>6.312 Mb/s</td>
</tr>
<tr>
<td>3</td>
<td>44.736 Mb/s</td>
<td>34.368 Mb/s</td>
<td>32.064 Mb/s</td>
</tr>
<tr>
<td>4</td>
<td>274.176 Mb/s</td>
<td>139.264 Mb/s</td>
<td>97.928 Mb/s</td>
</tr>
</tbody>
</table>
T-1 carrier system

- 24 voice channels coded in a TDM PCM frame
- One bit per frame signaling channel
- T-1 carries speed is \((24 \times 8 + 1) \times 8000 = 1.544 \text{Mbit/s} \)
- One sample per channel every 125μsec
- Frame multiplexing to increase transmission speed

PDH: synchronization

- Every node has its own clock
- No global (network wide) synchronization
- Only link by link synchronization
- Local clock drift
 - Synchronization errors
 - Bit are stuffed to compensate for clock drifts

SONET/SDH hierarchy

<table>
<thead>
<tr>
<th>OC level</th>
<th>STS level</th>
<th>SDH level</th>
<th>Mbit/s</th>
</tr>
</thead>
<tbody>
<tr>
<td>OC-1</td>
<td>STS-1</td>
<td>STM-1</td>
<td>51.84</td>
</tr>
<tr>
<td>OC-3</td>
<td>STS-3</td>
<td>STM-1</td>
<td>155.52</td>
</tr>
<tr>
<td>OC-12</td>
<td>STS-12</td>
<td>STM-4</td>
<td>622.08</td>
</tr>
<tr>
<td>OC-24</td>
<td>STS-24</td>
<td>STM-8</td>
<td>1244.16</td>
</tr>
<tr>
<td>OC-48</td>
<td>STS-48</td>
<td>STM-16</td>
<td>2488.32</td>
</tr>
<tr>
<td>OC-192</td>
<td>STS-192</td>
<td>STM-64</td>
<td>9953.28</td>
</tr>
<tr>
<td>OC-768</td>
<td>STS-768</td>
<td>STM-256</td>
<td>39813.12</td>
</tr>
<tr>
<td>OC-3072</td>
<td>STS-3072</td>
<td>STM-1024</td>
<td>159252.48</td>
</tr>
</tbody>
</table>

SONET framing

- Synchronous transmission
 - Bit continuously sent
 - Only possible on a point to point link
- Flow multiplexing obtained via a TDM scheme
 - Designed to ease VLSI implementation
- Every frame includes a physical layer PCI
 - Synchronisation info
 - Service voice channel
 - Error/fault management
SONET: STS-1 frame

• 51.84 Mbit/s

Access network

Gruppo Reti TLC
nome.cognome@polito.it
http://www.telematica.polito.it/

Access networks

• Used to reach the users (last mile)
• Also named local loop
• Main technologies:
 – Plain Old Telephone Service (POTS)
 – Integrated Services Digital Network (ISDN)
 – Asymmetric Digital Subscriber Loop (ADSL)
 – cable-modem over Cable-TV infrastructures (CATV)
 – wireless: Local Multipoint Distribution Service (LMDS), Wi-MAX
 – Cellular networks (GPRS, UMTS)
 – PONs (Passive Optical Networks)

Radio access networks

• Wireless network
 – Access to the network is obtained through a terminal connected via a wireless link
 • An access point can be identified
 – No support for mobility
• Cellular network
 – A large geographical area is covered via adjacent (sometimes superimposed) cells
 – Small areas under the control of an antenna.
 – The mobile terminal can move from one cell to another cell without any communication interruption
 – Support for mobility (handover)

POTS: modem

• MODEM: MOdulator / DEModulator
• Used for connection over public telephone networks
• Transmission: adapt the digital signal to the analog signal suited to be sent over the twisted pair
• Reception: analog to digital conversion
• Make the digital signal suitable for analog transmission on the voice band

POTS: the modem

• DTE = user terminal
• DCE = modem (netwrk device)
Modem standard

- Analog modulation (Bell and CCITT)
 - V.21 300 b/s
 - V.22 1200 b/s (Bell 212A)
 - V.22 bis 2400, 1200 b/s
 - V.23 75/1200 b/s usato per Videotel
 - V.32 9600, 4800 b/s
 - V.32 bis 14400, 12000, 9600, 7200, 4800 b/s
 - V.34 33600, 31200, 28800, 26400, 24000, 21600, 19200, 16800, 14400, b/s

- Last modem generation reached (standard V.90)
 56 kb/s in reception and 33.6 kb/s in transmission

ISDN: digital access to telephone network

- ISDN: Integrated Services Digital Network
- Integrated network (almost all)
 - Voice and data transport over the same telephone infrastructure
- Digital access
 - From the user terminal
 - Classical telephones need A/D converters
- Connection oriented
 - Time based pricing
- Exploits plesiochronous transmission (TDM frame based scheme)
- Packet and circuit services
 - Telephone, fax, data transmission

ISDN: motivations and standardization

- ISDN main goals were
 - Extend TLC services beyond telephone
 - Uniform and standardized access
 - Unified digital interface for all services
- ISDN standardization process
 - From 1980 to 1988 within CCITT (ITU-T)
 - Standardized starting in the last ’70 s up to early ’90s
 - Commercially available in the ’80s (starting in the USA)

ISDN: transmission interface

- Two types of channels:
 - B channel - Bearer - 64 kb/s
 - Voice, data, fax, low resolution video
 - D channel - Data - 16 kb/s (or 64 kb/s)
 - Signaling, Data, telecontrol
- An ISDN access can be obtained by freely combining the two channels
 - nB + mD (with arbitrary n and m)
- In practice, only few combinations of m and n are available

ISDN architecture

- Few standard interfaces where defined
 - BRI - Basic Rate Interface –
 - 2B + D (128kb/s)
 - PRI - Primary Rate Interface –
 - 30B + D (EU)
 - 23B + D (USA)
- Channels are separated in time (TDM)
ISDN: Basic Rate Interface
- Used for domestic access or in small offices
- Adaptors are used to keep compatibility with existing devices
- The digital signal is distributed among devices in user premises through the S-bus.

ISDN: Primary Rate Interface
- Used for business access
- Groups several B channels in a single H channel:
 - H0 - 6B - 384 kb/s
 - H11 - 24B - 1536 kb/s - equivalent to DS1
 - H12 - 30B - 1920 kb/s - equivalent to E1

ISDN: reference points and functional architecture
- TE1: Terminal equipment
- TE2: Terminal equipment
- TA: Terminal Adapter
- NT2: Network termination
- NT1: Network termination
- S-bus: Signals distribution

DSL access
- DSL (Digital Subscriber Line) is a family of technologies (also named xDSL)
 - Data transfer in the access segment at high speed
- Most widely deployed ADSL (Asymmetric DSL)
 - Higher bit rate in downstream, lower in upstream
 - Designed for client-server applications, web browsing
- Maximum ADSL bit rate
 - Highly dependent on the distance between the user and the first access node
 - From few Mbit/s to tens of Mbit/s
- Dedicated bit rate from the user to the first access node

ADSL: scenario
- Splitter filter
 - Separates voice signal from data
- Modem
 - Modulates/demodulates the signals to the proper frequency band

ADSL at user premises
- Voice line
- Data line
- Voice Only Twisted Pair
- Voice & Data Twisted Pair
- Data Only Twisted Pair
- Digital Subscriber Line Access Multiplexer (DSLAM)
- Public Switch
- Telephone
- Home
- Business
ADSL in the network

- Filter/modem POTS
 - separates voice and data flows
- DSLAM (DSL Access Multiplexer)
 - Receives several data flows from users and multiplex them on a single channel

HFC access network

- CATV (cable TC) are also named Hybrid Fiber Coax (HFC)
- Designed originally for unidirectional transmission

HFC

- Exploit the cable TV transmission medium (fiber in the network and coax in the last mile)
- Tree topology
- Bandwidth multiplied among all users
 - Shared bandwidth
- Data and TV signals exploits separate bandwidth (filter used at the receiving end in user premises)
 - 50-450 Mhz for TV, 6Mhz per channel
 - 450-750 Mhz for downstream data
 - 5-50 Mhz for upstream data (often not usable due to mono directional amplifiers, may rely on the telephone network)
- **Cable modem** used by users to decode data

ADSL vs HFC

- HFC bandwidth is shared among all users in a given area, ADSL bandwidth is dedicated (in the access link)
- HFC have security issues (shared medium)
- DSL exploits telephone twisted pairs, HFC requires Cable TV or laying ad hoc cables
- ADSL bit rate decreases with the distance, HFC bit rate is almost distance independent

Accesso Radio Mobile

- Well established technologies
 - Data access through cellular access: GPRS, UMTS
 - Hot Spot coverage: IEEE 802.11 (Wi-Fi)
- More recent technologies
 - IEEE802.16 (Wi-Max)

Mobile radio access

- Satellite networks
 - GEO (35000 km, 270ms, 3 satellites for global coverage), used for broadcast transmission and data services
 - MEO (15000 km, 50ms, >10 satellites), used for GPS not for telecom applications
 - LEO (<1000 km, 5ms, >50 satellites), satellite telephony with worldwide coverage. Low delays
 - Iridium, Globalstar
 - Stratospherich platform (under study)
Iridium

- 66 active satellites and 11 backup satellites
- Constellation of six polar planes
- Each plane has 11 satellites acting as switching nodes
- One satellite available on each earth region
- Original value $5 billion, sold at $25 millions

Globalstar

- 48 active satellites and 4 backup satellites
- Constellation with crossing multiplanes
- CDMA transmission