Copyright Notice

This set of transparencies, hereinafter referred to as slides, is protected by copyright laws and provisions of International Treaties. The title and copyright regarding the slides (including, but not limited to, each and every image, photography, animation, video, audio, music and text) are property of the authors specified on page 1.

The slides may be reproduced and used freely by research institutes, schools and Universities for non-profit, institutional purposes. In such cases, no authorization is requested.

Any total or partial use or reproduction (including, but not limited to, reproduction on magnetic media, computer networks, and printed reproduction) is forbidden, unless explicitly authorized by the authors by means of written license.

Information included in these slides is deemed as accurate at the date of publication. Such information is supplied for merely educational purposes and may not be used in designing systems, products, networks, etc. In any case, these slides are subject to changes without any previous notice. The authors do not assume any responsibility for the contents of these slides (including, but not limited to, accuracy, completeness, enforceability, updated-ness of information hereinafter provided).

In any case, accordance with information hereinafter included must not be declared.

In any case, this copyright notice must never be removed and must be reported even in partial uses.
Routing Phases

- On-the-fly routing: use the routing table
- Proactive routing: build routing tables
 - Manual configuration
 - Static routing
 - Distribute destination information throughout the network
 - Routing protocols
- Support for both IPv4 and IPv6
Enabling IPv6 routing

- Recent routers support IPv6 forwarding
 - Most likely disabled
- Sample configuration on Cisco router

Router# configure terminal

Router(config)# ipv6 unicast-routing

- IPv6 addresses can be configured on interfaces
- IPv6 packets are forwarded
IPv6 routing table

- Routing based on longest prefix match
 - Same as in IPv4

- IPv6 and IPv4 are dealt with as two independent protocols
 - Separate routing tables
Routing protocols

- Integrated Routing
 - A single protocol to advertise destinations of both protocol families

- Ships in the night
 - Each address family uses a distinct protocol
 - Protocols are completely independent one from the other
Integrated Routing

- No need to duplicate mechanisms
 - Advertisement messages
 - Fault detection

- Which family (IPv4, IPv6) will transport protocol messages?

- A new protocol: might have bugs hampering IPv4 operation

- IPv4 and IPv6 topologies might be different
Ships in the night

- It is possible to use different routing protocols
 - Tune choice to topology/scenario
- Smoother migration
- Simpler troubleshooting
- Duplicated mechanisms
IPv6 routing protocol options

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static</td>
<td>Ships in the night</td>
</tr>
<tr>
<td>RIPng</td>
<td>Ships in the night</td>
</tr>
<tr>
<td>EIGRP</td>
<td>Ships in the night</td>
</tr>
<tr>
<td>OSPFv3</td>
<td>Ships in the night (Integrated routing is possible)</td>
</tr>
<tr>
<td>IS-IS</td>
<td>Integrated routing</td>
</tr>
<tr>
<td>MP-BGP</td>
<td>Both (configuration-dependent); “Integrated Routing” is the most commonly deployed because of practicality: BGP process identified by AS number, which is the same for both IPv4 and IPv6.</td>
</tr>
</tbody>
</table>

![Diagram showing AS1, BGP, AS2 with RIPng, OSPFv3, IS-IS, and EIGRP]
Routing table example

C2800#sh ipv6 route
IPv6 Routing Table - 15 entries

Codes: C - Connected, L - Local, S - Static, R - RIP
 O - OSPF intra, OI - OSPF inter

<table>
<thead>
<tr>
<th>Code</th>
<th>Prefix</th>
<th>Metric</th>
<th>Interface(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O</td>
<td>2013::/112</td>
<td>110/65</td>
<td>via FE80::20F:34FF:FEE7:ABDE, FastEthernet1</td>
</tr>
<tr>
<td>O</td>
<td>2016::/112</td>
<td>110/65</td>
<td>via FE80::223:EBFF:FE44:C6EE, FastEthernet0, FastEthernet1</td>
</tr>
<tr>
<td>C</td>
<td>2017::/64</td>
<td>0/0</td>
<td>via ::, FastEthernet0/1</td>
</tr>
<tr>
<td>L</td>
<td>2017::2/128</td>
<td>0/0</td>
<td>via ::, FastEthernet0/1</td>
</tr>
<tr>
<td>L</td>
<td>FE80::/10</td>
<td>0/0</td>
<td>via ::, Null0</td>
</tr>
<tr>
<td>L</td>
<td>FF00::/8</td>
<td>0/0</td>
<td>via ::, Null0</td>
</tr>
<tr>
<td>S</td>
<td>::/0</td>
<td>1/0</td>
<td>via FE80::20D:BCFF:FEB9:29A3, FastEthernet2</td>
</tr>
</tbody>
</table>