Introduction to Voice over IP

Introduction to technologies for transmitting voice over IP
Telephone network and circuit switching

- **Static circuit allocation**
 - 64Kbps full duplex

- **Characteristics**
 - No compression
 - No high quality communication (e.g. stereo, better codecs), if not in multiples of 64kbps
 - No pause suppression
 - No statistical multiplexing (static allocation of bandwidth)
 - Signalling procedure (call setup)
Data network and packet switching

- Solutions to previous problems
 - Better compression
 - High quality communication
 - Pause suppression
 - Statistical multiplexing (flexible bandwidth allocation)
 - Signaling procedure (call setup)

- New problem
 - Quality of service management
 - Caused by lack of session setup in IP
Different perspectives for Voice over IP

- Always the same basic technologies
- Different user groups have different interests in VoIP
 - domestic user ("consumer" perspective)
 - telephone operator ("telecom" perspective)
 - corporate user ("enterprise" perspective)
VoIP “consumer” perspective

- **Phase 1**
 - Vocaltec Internet Phone, 1995
 - Microsoft NetMeeting, Microsoft Messenger

- **Phase 2**
 - domestic VoIP services
Pros and cons of the "consumer" perspective

- **Software phone**
 - **Pros**
 - Reduced costs
 - New services (video, white board, desktop sharing)
 - **Problems**
 - It is necessary to use a PC, which should be on and connected
 - Only PC-to-PC communication allowed

- **Hardware phone**
 - It is like a normal phone set, with reduced costs
 - IP phone, IP adaptor, USB phone, …

- **In both cases, mobile telephony is not considered**
The “telecom” perspective of VoIP: ToIP

- Using IP technologies to transport phone calls
 - PC is no longer an enabling element for VoIP
 - Traditional phone sets still used

- VoIP
 - Set of technologies to transport voice samples
 - Include also signaling operations
 - ToIP: set of technologies to transport voice over IP
 - They include VoIP technologies, but more is required
 - Intelligent network services
 - Integration services for integration with traditional telephone network (POTS)
 - SS#7 signaling over IP, translation between SS#7 and VoIP signaling, ...
ToIP pros and cons

+ No change is required for the terminals at the network edge
+ Update required only for few devices, under operator control
- No change in user perception of the service
- No innovative services (voice/video/data integration)
Why to migrate toward ToIP?

- If ToIP does not offer innovative services, why to implement it?
- Economic and management issues
 - Single network = lower costs
 - Before, telephone network used to transport all the traffic
 - Future trend: data network will transport all the traffic (including phone calls)
- Evolution of the data network
 - Only data, all equal
 - New applications with different requirements (delay, bandwidth, ...)
 - The network should change to respond to new requirements
 - Network ready to transport not only data with different needs, but also differentiated services (multiservice network)
 - Distinct edge network for different services, same core

⇒ implementation of a single multi-service network
Migrating toward a multi-service network

- Often, it is immediate for new telecom operators
- "Tradizional" operators have more problems:
 - Wide bandwidth in traditional telephone network is already installed
 - Personnel already trained on old technologies
 - Revenues for telephone traffic still higher than for data traffic
 - Problems to switch to new technologies
 - Mature telephone technologies, while data technologies still partially immature
Example of ToIP network

Access network: telephone technology

Backbone: IP technology (non Internet)

Gateway

Access network: IP technology
The “enterprise” perspective of VoIP (1)

- **Focused on value added services**
 - The economic motivation is less important
 - Integration between POTS and VoIP

- **First motivation: service personalization (often via web)**
 - Call forwarding over different channels according to several parameters (time, caller/called identity, ...)
 - Display of calls placed, chiamate unanswered, ...
The “enterprise” perspective of VoIP (2)

- Second motivation: integration with other applications
 - E-presence and Instant Messaging
 - Videocalls, application sharing
 - File transfer
 - ...

![Windows Messenger](image)
Creating a VoIP flow

- Summarized in 9 phases
 - Sampling
 - Encoding
 - Packetization
 - Queuing
 - Transmission
 - Propagation
 - De-jitter
 - Re-ordering
 - Decoding
Sampling and encoding

- **Sampling**
 - Digitalization of an analog signal
 - Sensibility (bit)
 - Sampling frequency (hertz)
 - Theoretical bit rate

- **Encoding**
 - Processing of digital samples
 - Compression factor
 - Actual bit rate
 - Delay is introduced (e.g. differential encoding)

![Diagram of signal processing](image-url)
Possible encoding techniques

- **Main approaches:**
 - Differential encoding
 - Weighted encoding
 - Lossy encoding (problems with modems)

- **Pause suppression**
 - Often used in VoIP
 - The receiver introduces white noise during pauses
 - Problem: prompt recognition when the speaker resume talking
 - Loss of initial fragments of the signal
 - Several techniques can be combined together

- **Low rate does not imply low quality**
 - Aggressive Codecs may not work well with sources they are designed for (e.g. music)
Encoding problems

- Complexity
 - More effective techniques, more complex computations
 - Compression may be located in two places:
 - Terminal (phone set): difficult to update all
 - Gateway: large processing power (it should encode lot of conversations at once)

- Delay, in particular for differential encoding
 - MPEG uses differential encoding respect to both previous and following frame
Codec for telecom operators

- Normally PCM64
 - Works for both voice signal and other types
 - Processing poser required in terminals

- One of VoIP promises is not fulfilled: lower bit rate

- Codec selection:
 - Classical parameters: processing complexity, delay introduced, bandwidth required e quality of the encoded signal
 - “Logistic” parameters
 - Need to update terminals and computing power required in the VoIP gateway
 - Commercial parameters
 - Implement data services over the telephone network
Voice codecs

- **PCM family**
 - Standard sampling, one each 125 μs
 - G.711: 64 kbps

- **ADPCM family**
 - Adaptive encoding
 - G.726: 16 – 24 – 32 kbps

- **CELP family**
 - Interpolation encoding
 - G.728: 8 – 16 kbps
 - G.729: 8 kbps
 - CS-ACELP, very popular

- **Adaptive codecs**
 - G.723: 5.3 – 6.4 kbps
 - Very popular in PC-to-PC communication
Codec and silence suppression

- Better transmission efficiency
 - Conversations are normally “half duplex”
 - Pauses between syllables, words and phrases

- Problems introduced
 - It may be necessary to introduce artificial environmental noise, in order to reproduce normal conditions
 - The encoder may introduce a delay in recognizing that the pause is terminated
 - Some old coders cut the first part of a word, when it was preceded by a pause
Codec and echo cancellation

- Negligible if the round trip delay is small
 - ~ 10 ms
- VoIP network
 - Delays of up 200ms (round trip)
 - Echo cancellation is required
 - Increase of the computing power
Packetization

- First peculiar operation of a packet switched network

Characteristics:
- Needed to lower header overheads
 - 64kbps, in 1 byte/packet: 3.7Mbps!
- Important delay introduced
- Trade-off between delay and efficiency
 - Normal values between 20 and 40 ms
Packetization delay

- Packetization delay
 - It depends on the number of samples per packet
- Trade-off between delay and efficiency
 - Normal values between 20 and 40 ms

Time required to fill one packet (packetization delay): 1.25 ms (125 * 10)
Queuing problems

- When input traffic is larger than the output link capacity (for some period of time)
 - The router should store packets waiting for transmission (buffering)
 - Delay increases
- Possible solution: priority queue management
Priority queue management: marking

- Need to control the amount of high priority traffic in the network

- Need for accurate traffic control for selective marking

- All the input traffic should be marked as low priority one

- All the input traffic may be marked as high priority one
Transmission issues (1)

- Finite size of the packets
 - It is necessary to wait until the end of the current transmission, before starting the next one
 \[T_{tx}(P) = \frac{L(P)}{B} + \frac{MTU}{B} \]
 - The time required to transmit a packet \(P \) \((T_{tx}(P)) \) is proportional to its length \(L(P) \) + time required to transmit the largest packet in the network (whose size is given by MTU) (maximum time, without waiting line)
Transmission issues (2)

- **Priority Queuing**
 - Limits waiting times, but it cannot avoid transmission delays

- **Some figures**
 - ADSL (1 Mbps upload): $T_{tx,\text{min}} = \frac{1500}{1 \text{ Mbps}} = 1.5 \text{ ms}$
 - In general, not all packets incur on this delay; however, jitter is increased

- **Solutions**
 - Use links with large bandwidth
 - PPP interleaving
 - Do not use other applications during voice calls
De-jitter

Problem

- Variable delay is introduced by the network for each packet
- Voice samples in the packets should be played back at the same pace used to generate them

Solution

- De-jitter block
- Buffer that allows the playback application to extract at constant pace the samples
- Size: maximum jitter introduced by the network, or maximum delay allowed for one block

Packet arriving with excessive delay are lost

Variable delay

De-jitter

Constant delay
Packet re-ordering

The network can deliver out-of-order packets

Solution

- The same as for de-jitter
- Normally, the same blocks deals with both problems
Decoding

- Symmetric task with respect to encoding
- Reconstruction of missing packets:
 - Predictive techniques
 - Silence insertion
 - Replay of the samples in the last packet received
 - Some combination of the techniques listed above
- Less complex (normally) than encoding
 - Decoding process is determined by the transmitted information
 - Encoding may require the selection between different options, to achieve better quality
 - Same delay characteristics as for encoding
Error correction techniques

- Based on redundancy
 - Information about sample N:
 - In the current packet, with high rate encoding
 - In the next packet, with lower rate encoding
 - Hierarchical encoding

- Not very used, actually
 - It is better to rely on the recovery features of the human ears
Parameters of a voice session

- Delay
 - The most important one
- Bandwidth
- Loss rate
Delay

- Very important parameter for correct interaction
- End-to-end delay (reference values defined by ITU)
 - 0 – 150 ms: acceptable
 - 150 – 400 ms: only for inter-continental calls
 - > 400 ms: not acceptable
 - Talking overlap harms conversation
- Actual delay: round trip delay
Bandwidth

- **Voice traffic: anelastic**
 - Packet flow cannot be delayed, even for short periods
 - Buffering within the network is not important
 - In the case of priority queuing, waiting line for voice packets may be very short

- **Data traffic: elastic**
Losses

- **Maximum tolerated percentage: 5%**
 - The human ear can tolerate without problems a certain number of missing packets

- **Quality of the conversation**
 - Round-trip delay is more important than data integrity
 - Re-ordering and de-jitter blocks are normally configured with reduced delay budget
RTP (Real-Time Protocol), RFC 1889

- General features
 - Native multicast transmission
 - Not connected to a specific network (currently used only over IP/IPv6)
 - Packet fragmentation/re-assembly is not considered
 - It may be implemented at lower layers
 - No error transmission detection (checksum)
 - If necessary, it should be provided by the underlying network
 - Data formats not specified
 - Specified in separate documents (Audio Video Profiles)
 - Not connected to a specific codec
 - Able to use different “Payload Types”
RTP (2)

- **Real time data transport**
 - Packet sequencing
 - Time information (timestamp)
 - Only one flow per session
 - No lip-synch
 - It is possible to use an external block, all the required information is provided

- **RTCP (Real Time Control Protocol)**
 - Connection monitoring and control
 - Odd numbered UDP port following the one used by RTP

- **Difficult to detect (firewall, QoS)**
 - It does not use standard ports
 - Several implementations use a static range of ports
RTP packet format

<table>
<thead>
<tr>
<th>V</th>
<th>P</th>
<th>X</th>
<th>CC</th>
<th>M</th>
<th>PT</th>
<th>Sequence number</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Timestamp
- Synchronization source identifier (SSRC)
- Contributing source identifier (CSRC)
- ...
RTP Mixer

- **Device able to manipulate RTP flows (e.g. mixing several flows)**
 - Transmission is transformed to a virtual hub topology
 - Useful for a session with several unicast users
 - Useful also in case of unicast/multicast users in the same session
 - The field CSRC is used to distinguish the original flows that have been merged into one
 - It is possible to do signal processing (e.g. suppression of non active audio channels)
RTP Mixer and Multicast

Unicast host:
Transmission: (N-1) flows
Reception: (N-1) flows

Multicast host:
Transmission: 1 flow
Reception: (N-1) flows

Unicast host with mixer:
Transmission: 1 flow
Reception: 1 flow

The mixer is always useful to save bandwidth, even when source may use multicast transmission.
The processing load is not different from “traditional” case.
RTP and dynamic ports

- Each RTP session is dedicated to only ONE medium
 - The PT field is used to discriminate among different payload types
 - It may change at each packet sent (e.g. change of codec)
 - It may convey a “neutral” code (*dynamically negotiated*)
 - Different media should use different RTP sessions
 - The number of sessions is not known a priori
 - Audio, video, white board, etc?

\[\textit{it is not possible to assign “well-known” ports}\]
Model for a VoIP network

- Gateway between POTS and IP network
 - Media Gateway
 - Signaling Gateway
 - Gateway Controller

- Gateway in homogeneous networks

- Network architectures
 - IP network as a backbone
 - Mixed network
 - IP network
 - IP-only network
Gateway between POTS and IP network
Media Gateway

- Translation of the audio encoding
 - E.g. between PCM@64kbps, popular in telephone network, and G.723@5.3kbps (and vice versa)

- Included already in intelligent terminals
Signaling Gateway

- **Signaling interface**
 - Dialing
 - Busy/ringing/idle tones
 - On/off-hook
 - Signaling within the network
 - Call setup with the correct end-point
 - Signaling in intelligent network
 - Call back when busy, caller ID, 3 party conversation, ...

- **The distinction between Media and Signaling Gateway is often not clear**
 - Generating busy/ringing tones: normal audio packets sent to the phone set
Gateway Controller

- Supervision and monitoring of the whole gateway
 - Control of traffic quality
 - Often, a maximum percentage of telephone traffic is allowed in a data network (otherwise the quality degrades)
 - Authorization
 - User authorized to place/receive calls
 - Authentication
 - E.g. billing to the right customer
Support server in homogeneous networks

- Some functions cannot conglobated in the user terminal
 - Complex functions
 - E.g. call forwarding, path preparation, etc
 - Reserved functions
 - Caller authentication/authorization

- Gateway: still present in homogeneous networks
 - Reduced functionalities: e.g. media gateway normally integrated in the user terminal
Telephone network, backbone IP

- **Traffic collection**
 - Traditional technology

- **Backbone**
 - IP technology

- **Migration process**
 - Similar to that used to migrate towards data network
 - Lower costs (smaller number of points to update)

- **Phone call**
 - Goes normally through 2 gateways (no gateway, for local calls)
Mixed network

Use cases
- New provider
 - Pre-existent infrastructure is not available
- Company with a new site
 - Unified data+voice network

Interfacing between corporate and external networks

Characteristics
- Usually, VoIP phone set different from a PC
- It is an example of a gateway within an IP network
IP network

- **Two successive steps**
 - Intelligent network services still with "telephone" interface
 - In particular, signaling
 - IP-only network
Most important signaling protocols

- **Goals**
 - Addressing
 - Data transport
 - Security
 - Intelligent network support
 - Simplicity and transparency

- **Main standards**
 - H.323, ITU
 - Several implementations exist
 - Complicated
 - It uses components defined for other purposes by ITU
 - SIP, IETF
 - More trendy solution