Switched LAN Design

Fulvio Risso
Politecnico di Torino
Outline

- This slide set is organized in two main parts
 - 1) Historical overview of switched LAN design
 - 2) Some more precise design criteria
Switched LANs evolution (1)

- Progressive replacement of shared segments with switches
Switched LANs evolution (2)
Switched LANs: state of the art (1)

- Currently, end systems directly connected to switches
 - More aggregated bandwidth
 - No need to replace NIC on clients when moving from hubs to switches
 - Switches may be 10/100/1000 and support different speed on the client side
 - Possibility to smooth upgrade of the network (NICs, hubs/switches), mixing different Ethernet technologies
 - Hub do not support multiple speed
Switched LANs: state of the art (2)

- Technologies no longer used in the real world of Ethernet
 - CSMA/CD
 - Only one station can be attached to a physical link (no need to arbitrate the channel)
 - Frame bursting
 - Carrier Extension

- What remains of the original Ethernet DIX
 - Framing

- Maximum diameter of an Ethernet (Fast/Giga/...) network
 - Max diameter (for collision domain) is no longer a problem
 - Max cable length (due to signal attenuation) is still a problem
 - E.g., 100m from end-system to a switch (twisted pair) is still a valid limit
Switched networks and throughput (1)

- Aggregate bandwidth increases

!Throughput may not!

1) Uplink speed is a critical factor
 - Uplinks must sustain the traffic of all the attached station
 - Links toward servers must be fast enough
 - Is it a good choice to have clients connected at 1Gbps?
Switcched networks and throughput (2)

2) Poor segregation of different network segments
- Multicast/broadcast propagated across the entire network
 - What about 50 lectures at 10Mbps each, transmitted on the University campus?
- Backward learning process generates transient
 - Generates useless traffic across the network
- Possibility to attack the network
 - Flooding attacks, ARP poisoning
 - Additional (useless) traffic across the network
Switched networks and throughput (3)

3) Buffers play an important role in switches

- Classical Ethernet implements a “reliable” transmission
 - Why can CIFS and NFS use UDP for data transfers?
- Switches may drop frames due to congestions (limited buffer size)
- TCP algorithms (timeout, fast retransmit, …) come into play
 - Dramatic decline in throughput
 - TCP dimensioned for reacting in about hundred ms, not microseconds
- By the way, buffers in switches may be very small (some tens of Kbytes even in professional switches)
 - We need fast memory, and fast memory is expensive
Switched networks and throughput (4)

- A case from the real world: a remote backup on a geographical L2 network

- **S1**: Throughput 1Gbps
- **S1+S2**: Throughput 1Gbps
- **S1+S2+S3**: Throughput << 1Gbps
Switched networks and scalability

- Broadcast (and, in some sense, multicast) is still a problem
 - Single broadcast domain

- Network size limited by the number of stations
 - Usually, no more than 1000 stations

- Cannot use all the links of the network
 - Expensive especially on the wide area
Switched networks and security

- Poor segregation of different network segments
 - Backward learning process generates transient
 - Possibility to attack the network (flooding attacks, ...)
 - No “hard” way to segregate traffic in multiple segments
 - Unless VLANs are used
Switched networks and VLANs

- VLANs are ubiquitous
- An enterprise-class switched LAN will have VLANs
- VLANs are a must-have technology

- Usually, L3 is integrated in modern switched LANs
 - More details in the L3 design slides
Designing an STP network: BridgeID (1)

Note: dashed lines are present for better comprehension. However, in practice we disable ports, not links.
Designing an STP network: BridgeID (1)

- STP is plug-and-play, but the resulting network may not be appropriate

- Suggestions:
 - Customize the Bridge Priority field in order to force a specific bridge to become Root Bridge
 - Get prepared for any trouble the Root Bridge may have, and define which should be the next root bridge in case the first one fails
 - Backup Root Bridge
 - Customize the Bridge Priority field of the “backup root bridge” in order to force that bridge to become Root Bridge in case the first one fails
 - You may have also to change some cost links in order to force STP to select the paths you want
A more detailed view of switched LANs design

Criteria and tips for engineering a network
Introduction

- Network is the backbone of all information system
 - If it works, nobody notices it
 - If it doesn’t, everyone complains (also the CEO) and you may be in trouble
- Please note that...
 - If something else doesn’t work properly, the problem will always be the network
 - People never blame servers, applications, ...
- Therefore...
 - Your network must be as good as possible in order to work properly
 - You must clever enough to have data that demonstrate that it is not your fault!
Design criteria

- Focusing on L2 networks

Criteria

- (A) Reliability
- (B) Fault tolerance
- (C) Security
- (D) Performance
- (E) Modularity and extensibility
- (F) Debugging
- (G) Additional features
(A) Reliability (1)

- Good cabling system is a fundamental prerequisite
 - Several faults (usually intermittent and very difficult to diagnose) may arise in case of a poor quality cabling
 - E.g. Are you sure that your cables will follow the shortest path when connecting point A to point B?

- Selection of network devices
 - Different families of network devices, apparently with same characteristics
 - What about redundant modules?
 - What about MTBF?
Reliability (2)

- Observance of standard specifications
 - Do not exceed the known limitations of the standards
 - Cabling
 - Particular attention is needed for fiber-optics backbones
 - Attenuation
 - Number of cascading switches
 - ...

(B) Fault tolerance

- The network must be able to operate also when facing one or more failures
 - Links
 - Devices
 - Device parts
 - Interfaces
 - Power suppliers
How do we achieve fault tolerance?

- Adding redundancy on critical elements
 - Interface level
 - Parallel interfaces
 - Redundant ports
 - Device level
 - Processor
 - Power supplier
 - NICs
 - Network level
 - Additional links (i.e., alternate paths)
 - Duplicating a device (e.g., a second (backup) switch)
- Combining all of these
- Robust devices, or many devices with backup capabilities?
How much redundancy?

- Each new element has a fault probability and a cost
 - Fault probability of each element must be analyzed carefully
- Too many elements may
 - Increase fault tolerance capabilities marginally
 - Increase costs substantially
- So, better to duplicate only the weakest elements
- Fault tolerance is always a compromise among
 - Real fault tolerance needs
 - How much does it cost to my organization a stop of N minutes in the network?
 - Please note that a stop of N min of the network may cause a stop of M min of some services
 - Cost
The golden rule

The fault tolerant solution must be as simple as possible and use the lowest number of redundant elements required to guarantee a “path” that can replace the faulty one.
(C) Security

- Network isolation
 - VLANs
 - Access Control Links (at various level)
- 802.1x
(D) Performance

- Two aspects
 - Dimensioning of network devices and link bandwidth
 - Network topology
- In both cases, an accurate traffic study is required
Performance: traffic survey

- Traffic typology
 - Client-server, peer-to-peer
 - Departmental servers, or corporate servers
 - Servers (with higher bandwidth) near users or in datacenter
 - Mostly internal to the LAN, or mostly toward the Internet
- Special events (e.g. corporate-wise conventions)
- Traffic monitoring (over different time scales) may be required
 - In case of new installations, we can try with a traffic survey of some similar companies
Performance: selection of devices / links

- Given the traffic survey, we can choose devices / links

- Selection of network devices
 - Possibility to accommodate fastest network interfaces
 - Internal switching capabilities (frames per second)
 - Attention required for multicast and/or other special traffic
 - Necessity of QoS capabilities (e.g. hw queues on interfaces)

- Links
 - Bandwidth
 - Link aggregation
Performance: dimensioning

- The most common approach is to over-dimension the network...
 - Inexpensive
 - Simplest to achieve
 - Simple to manage
 - No traffic engineering
 - No resource reservation
- ... and setup a continuous monitoring infrastructure in order to detect bottlenecks as soon as possible
- Often the bottleneck is the connection to the Internet, which is usually slower than the internal network
 - Cannot over-dimension the Internet connection due to cost problems
Network topology (1)

- Key decision for achieving performance, reliability, security, fault tolerance
- Unfortunately, often network topology is in some sense forced by some external constraint
 - E.g. location of the wiring cabinets
 - Interior designers seems to have more importance than network engineers
 - Network specialists must do their best anyway
Network topology (2)

- Network performance highly depends on the quality and topology of the underlying cabling system
 - Best choice: design everything at the same time
 - Wiring closets and cabinets
 - Cabling conduits
 - Link/device topology
 - Link/device dimensioning
 - Servers positioning
Logical topology (1)

- Core (or backbone)
- Distribution and aggregation
- Access
Logical topology (2)

- Core/backbone
 - Usually between different buildings in the same campus
 - Usually concentrated in a few switches, connected to the corporate data center

- Distribution/aggregation
 - Usually within the same building (vertical wiring)

- Access
 - Usually connects hosts on the same floor (horizontal wiring)
 - User control (e.g. 802.1x, ...)
 - Reliability may not be so important

- In all cases, point-to-point links
Logical topology: backbones

- Star-based system
 - N devices, N-1 links (with no fault tolerance at all)
 - Highly scalable (we can add new links from the star center or upgrade the star center in order to have more bandwidth)

- Tree
 - Evolution of the hub-and-spoke, for larger topologies

- Ring
 - Very efficient in terms of resiliency
 - "Shared" bandwidth
 - N devices, N links (with resiliency)

- Mesh
 - Usually discouraged
 - Large number of links/devices, no clear outcome of the network in case of fault
 - Difficult to debug
Logical topology and Spanning Tree

- Have you considered that the actual topology depends on the configuration decided by the STP?
 - Customize Bridge ID for better Root bridge selection and Designated Port Selection
 - Do not forget to design the network in order to perform well also in case of the most critical failures (e.g., root bridge)

- PVST may be another option
Logical topology and link speed

- Important to have an adequate difference between access and distribution/core
 - Limits dropped frames in L2 network
 - QoS issues
- Usually, 100Mbps is enough
 - Most people (vendors?) prefer 1Gbps, though
Logical topology: example of a building

- **Data center (CED)**
- **Horizontal wiring**
- **Vertical wiring**
- **Multilayer switch**
- **Router**
- **Internet**

- **Floor cabinet**

- **1Gbps / 10Gbps**

- **100Mbps / 1Gbps**
(E) Modularity and Extensibility

- **Links**
 - Link type (e.g., copper, fiber, ...)
 - GBIC, for a better choice of the proper physical technology
 - Other characteristics (e.g., simple fiber, armored fiber, ...)

- **Devices**
 - Fixed format
 - Chassis-based
 - Stackable devices
 - Hardware-based vs software based
 - Impacts performance as well

- **Configurability**
 - Fixed features, no field-upgradable operating system
 - Field-upgradable operating system (with new features)
(F) Debugging (1)

- First, adopt standard technologies
 - The standard specifies how the device should operate
 - Required for interoperability as well

- Second, be prepared in case users complain about the network
 - The network has to be reasonably robust
 - We must have debug facilities
 - For debugging the network (and, more important)
 - For debugging servers and clients
 - Mirror (also known as “span”) ports are a must
Debugging (2)

- Remember that, in the common belief, the problem is always the network
 - Either in terms of reachability ("I cannot reach my web server") or in terms of performance ("the server is slow")
- Be prepared to demonstrate that it’s not your fault
 - Network traffic live recording
 - In case regulations allow you to do so
 - Monitoring tools
Debugging (3)

- Prevention is better than cure
 - Systems for the management and control of the network for revealing anomalies and faults
 - Otherwise, the fault may happen and it remains unfixed because the network manager does not notice it
 - E.g., automatic network reconvergence (STP)
(G) Additional features

- Power over Ethernet (PoE)
- Quality of Service (QoS)
- VLANs
Good practices: power

- Redundant devices must have an independent power supply
 - Two power units, connected to different electrical backbones
 - Two independent electrical backbones

- Uninterruptible Power Supply systems for important devices
 - Usually 15-20 minutes with batteries
 - Then, a power generation must be activated

- Power distribution must be done with care
 - Different distribution lines for network and other users (e.g. lights)
 - Are you sure that you have no stoves connected to your distribution line?
 - Multiple lines for network devices for redundancy
 - What about everything under the same differential switch, which may go off?
Good practice: cabinets

- Cabinets and data centers are often in the basement
- Check that everything is safe in case of flooding
 - Do you have water pumps in order to keep your datacenter safe?
Good practice: links

- Redundant links
 - Fiber is better, especially in backbone
 - Copper is an electric conductor
 - Lightning
 - Some electrical cable that goes in touch with networking cables
 - Armored links (if needed)
 - Fiber over long distances
 - We may have intermittent problems (link flapping)
 - A de-flapper mechanism may be extremely useful
 - Especially if RSTP is used
Good practice: devices

- Redundant devices (e.g. the star center)
- What about servers?
Good practice: redundant paths

- Link Aggregation (when possible)
- Spanning Tree
 - Network analysis of the topology in case of fault of the most critical links/devices
 - Appropriateness of the resulting topology
 - Customization of BridgeID for Root bridge and backup root bridge
Spanning Tree and Fault Reaction

- Fault Reaction in 50 seconds
 - Is this time appropriate for my network?
 - Re-convergence of other services may be higher than 50s

- In case faster reaction is needed
 - New values for timers
 - Rapid STP

- STP limits
 - Max 7 bridges (also on the topology that comes out after a fault)
 - Single spanning tree (i.e. unused resources)
 - VLANs and MST?
 - L3 routing?
Redundant backbone: example
Conclusions

- The network is the backbone of any information system
- Not easy to design a good network
 - Many different aspects
 - From electrical system, to location of cabinets, to cabling, networking equipment, network topology, network protocols, air conditioning, data centers
 - Perhaps the most difficult problem is to foresee all the possible faults
- Experience matters