Rapid Spanning Tree Protocol

Fulvio Risso

Politecnico di Torino
Evolutions of the STP

- Rapid Spanning Tree protocol
 - Fast convergence
 - Appropriate for current network topologies (no hubs, only point-to-point links)

- Multiple Spanning Tree
 - Metropolitan area networks
 - Coexistence of STP and RSTP within the same domain
Rapid Spanning Tree (RSTP, 802.1w)

- Modern solution for mission critical BLAN
 - Fast convergence (less than 1 second)
 - Replaces other proprietary solutions with fast convergence introduced by many vendors
- Operates only on point-to-point links
 - Direct connections (no hubs)
- Major improvements
 - Fast topology convergence
 - Fast update of the filtering database
- Defines a set of symbols to be used in network design
- 802.1w and 802.1t-2001 were integrated in IEEE 802.1D-2004
Fast convergence

Requirements

- All the switches must be 802.1w
- Links that may create a mesh between different switches
 - Must be point-to-point (twisted pair or fiber), full duplex
 - STP supported also shared medium (e.g. coax)
 - No links terminated on hubs (although still possible at the edge; often marked as “shared links”)
 - These links guarantee that devices at both sides of the link detect the fault at the same time and that they initiate the convergence process at almost the same time

Convergence is usually on the order of ~ 10ms

- Faults are immediately detected in the physical layer
- New transition rules for ports helps to improve the convergence
Port States and Roles: STP

- STP does not distinguish appropriately between port *roles* and *states*

- Port States
 - Possible operational states with respect to data frames
 - Disabled, Blocking, Listening, Learning, Forwarding
 - Which is the difference between Blocking and Listening?
 - It relates to their status according to the STP topology, but from the operational point of view they behave the same (do not forward frames, do not learn addresses)

- Port Roles
 - Role of the port within the STP topology
 - Root, Designated, Blocking
Port States and Roles: RSTP

- RSTP has a better separation of the two concepts

- Port States
 - Possible operational states with respect to data frames
 - Only 3 states left (from 5 defined in STP)
 - Discarding, Learning, Forwarding
 - Disabled, Blocking and Listening merged in the same state

- Port Roles
 - Role of the port within the RST topology
 - Root, Designated, Alternate, Backup, Edge
Port states in RSTP

<table>
<thead>
<tr>
<th></th>
<th>Update filtering DB</th>
<th>Process frames</th>
<th>Possible RSTP role</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discarding</td>
<td>NO</td>
<td>NO</td>
<td>Alternate or Backup</td>
</tr>
<tr>
<td>Learning</td>
<td>YES</td>
<td>NO</td>
<td>The port is on the way to become Root or Designated</td>
</tr>
<tr>
<td>Forwarding</td>
<td>YES</td>
<td>YES</td>
<td>Root, Designated or Edge</td>
</tr>
</tbody>
</table>

States in STP

<table>
<thead>
<tr>
<th></th>
<th>Receive frames</th>
<th>Forward frames</th>
<th>Process received BPDU</th>
<th>Transmit BPDU</th>
<th>Update filtering DB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Disabled</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Blocking</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>NO</td>
<td>NO</td>
</tr>
<tr>
<td>Listening</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>NO</td>
</tr>
<tr>
<td>Learning</td>
<td>YES</td>
<td>NO</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
<tr>
<td>Forwarding</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
<td>YES</td>
</tr>
</tbody>
</table>
New Port Roles

- Root and Designated port remain the same
- Blocked ports are always “blocked”, but can assume one of the following states
 - Alternate
 - Backup
- New role: Edge ports

New RSTP Symbols

- Root port
- Designated port
- Edge port
- Alternate port
- Backup port
- Disabled port
New Port Roles: Alternate

- An alternate port is a blocked port that receives a better BPDU from *another* bridge
- Alternate port provides an *alternate path* to the Root Bridge
 - It can replace the root port if that port fails
New Port Roles: Backup

- A Backup port is a blocked port that receives a better BPDU from the *same* bridge
 - It acts as “backup link” for that LAN from the current bridge
 - It cannot always guarantee an alternate connectivity to the root bridge (e.g. it fails if the bridge itself fails)
 - Backup Ports exist only where there are two or more connections from the *same* bridge to the *same* LAN and one is Designated
 - It does no longer exist on modern networks
New Port Roles: Edge (1)

- Port that connects to a single end-station
 - No other switches are served from that point
- Needs an explicit configuration from the network admin
 - The RSTP still monitors the presence of BPDUs on that link
 - Protection against possible loops
 - In case a BPDU is received, the port will become part of the "traditional" RSTP domain and will change its status according to the well-known RSTP rules
New Port Roles: Edge (2)

- Edge ports work differently from other ports
 - As soon they detect the “link up” signal, they move immediately to Forwarding state without transition into the Learning state
 - No longer have to wait 30s (2 * Max Forward Delay) before having the port fully operational
 - Edge ports become immediately “Designated”
 - A port changing state do not triggers the transmission of a Topology Change Notification BPDU through the root port
802.1w BPDU (1)

- Protocol identifier: 00-00
- Version: 2
- BPDU Type: 2
- Flags
- Root Identifier
- Root Path Cost
- Bridge Identifier
- Bridge Identifier
- Port Identifier
- Message Age
- Max Age
- Hello Time
- Forward Delay

Only configuration BPDU (no Topology Change) Was “0” in 802.1D
Was “00” in 802.1D

More flags
802.1w BPDU (2)

- Modified
 - BPDU Type (now 2)
 - BPDU Version (now 2)
 - Old bridges can discard new BPDUs
- Flags
- New flags used for:
 - Encode role and state of the port that generates the BPDU
 - Handle the proposal/agreement mechanism

```
0 1 2 3 4 5 6 7
```

- Topology change
- Proposal
- Port role
- Learning
- Forwarding
- Agreement
- Topology change ACK

- 00 Unknown
- 01 Alternate / Backup
- 01 Root
- 11 Designated
Principles of the new algorithm

- The tree is created in the same way as STP
 - Root bridge election
 - Root port definition
 - Designated port definition
 - Other ports either Alternate or Backup

- Costs and other parameters are handled the same way

- The port not selected as root or designated will become:
 - Alternate if connected to a port on a different bridge
 - Backup if connected to a different port of the same bridge
Improvements against STP

- New BPDU Handling
 - BPDU are *sent* (not *relayed*) every Hello-Time
 - Faster aging of information
 - Accept inferior BPDUs

- Rapid Transition to Forwarding State
 - Edge Ports
 - Alternate Ports
 - Designated Ports: Proposal / Agreement Sequence
(1) BPDU sent every Hello Time

- BPDU are sent every Hello Time
 - In STP, non-root bridges simply relay BPDUs when receive them from the root port
 - If the root bridge dies, nobody generates BPDU till MaxAge expires
 - In RSTP, a bridge always generates its BPDU every Hello Time, even if it does not receive the corresponding BPDU from the root

- BPDU are used as “keep-alive” between bridges

- Hello Time: default 2 sec
(2) Faster Aging of Information

- If BPDU is not received for 3 consecutive times, the current BPDU of the root bridge is declared obsolete
 - No need to wait for MaxAge, although still valid parameter
 - Quick failure detection
 - Not very used, though, since most of RSTP networks are pure switched (and full-duplex networks)
 - In that case, convergence is even faster, since it exploits the signal coming from the physical layer (e.g. “link down”)

- Corollary
 - If a bridge fails to receive BPDUs from a neighbor, it can be sure that there is a fault on the link to the neighbor
 - In STP, the problem might have been anywhere from that bridge to the root
(3) Accepts Inferior BPDUs (1)

- If a bridge receives inferior BPDU from its Root port, it accepts the new BPDU immediately and replaces the one previously stored
 - The current bridge accepts that information without having to wait for MaxAge
 - The new BPDU will replaces the one previously stored
 - Much quicker convergence

- Inferior BPDU
 - BPDU with a worse RootID *(or)*
 - BPDU with a worse root path cost
(3) Accepts Inferior BPDUs (2)

- Rational
 - If a bridge receives inferior BPDU from its Root port (i.e., from its Designated or Root Bridge), it means that something bad happened on its path toward the root bridge
 - E.g., a link failure that increased the root path cost
 - E.g., a loss of connectivity toward the old root bridge, and another bridge elected itself as root
 - Being received on its Root port, the information is trustworthy
(3) Accepts Inferior BPDUs (3)

- This does not mean that the new (inferior) information will become immediately active
 - The new info is “accepted” and this triggers a new re-computation of the RSTP without having to wait for the timeout
 - In STP, we had to wait MaxAge in order to accept the new RootID
 - E.g., if the new RootID received is worse than the CurrentBridgeID, that bridge will start propagating itself as root
(3) Accepts Inferior BPDUs (4)

- **Example**
 - B1 detects loss of connectivity from the root
 - I.e., we need to elect another root
 - B1 starts promoting itself as a root bridge
 - B1 does not know the other bridge ID of the network, so it makes sense it elects itself as root
 - B2 and B3 accepts this info because it comes from the root port
 - In case B1 has better bridgeID than B2, B3, the RootID will not change
 - Otherwise, B2/B3 will reply with a better BPDU
(4) Rapid Transition to Forwarding State (1)

- Edge ports connect end users and are not part of the ST topology
 - Edge ports transition immediately in Forwarding State
 - No listening/learning stage
 - No delayed connectivity for the end user
 - No Topology Change Notifications

- Alternate Ports are immediately promoted Root when the Root port fails
 - If a Root Port fails and no Alternate Ports are available, the bridge start proposing itself as Root bridge
 - Rational: apparently, the bridge is no longer connected to the root
(4) Rapid Transition to Forwarding State (2)

- Designated Ports: the Proposal/Agreement Sequence allows bringing those ports up in a very short time
 - Available only on Full Duplex links
 - Full-duplex links are always point-to-point
 - A port in Half Duplex mode is considered as “shared port” by default

- Other ports follows
 - The algorithm works for Root and Designated; the other ports will follow consequently
 - By the way, those ports are blocked
Fault detected on the Root port

- If an Alternate port exist, it is promoted to Root
 - In case more than one Alternate exist, the best one is promoted
 - This path will become the new path toward the root bridge

- If no Alternate ports exist, the Bridge starts promoting itself as a new Root Bridge
 - Obviously, in this case all the ports go Designated
Proposal/Agreement Sequence (1)

- Algorithm for fast synchronization on the port role between two switches
- General idea: we want to re-create the proper tree starting from the root and propagate the new topology down toward the edge

![Diagram showing the proposal/agreement sequence with steps labeled as Designated + Discarding, Proposal: new Designated port, Agreement: new Designated port, and moved to Discarding state.]
Proposal/Agreement Sequence (2)

- Very fast, and **does not rely on timers**
- If a designated discarding port does not receive an agreement after it sends a proposal, it slowly transitions to the forwarding state, and falls back to the traditional 802.1D listening-learning sequence

Algorithm

- When a bridge comes up it puts its ports in a Designated Discarding state
- A port in Designated Discarding (or Designated Learning) sends a new BPDU to the other party proposing itself as Designated
Proposal/Agreement Sequence (3)

- Algorithm (cont)
 - If the bridge **accepts** the proposal, it will sync its ports
 - The SYNC process aims to verify that all of its ports are in-sync with this new information, and that no loops can occur
 - The SYNC process occurs only if the bridge detects that the incoming BPDU contains better information
 - The SYNC process will block all the active ports
 - Edge, Alternate and Backup ports are kept unchanged
 - Root and Designated ports are moved into Discarding state
 - The bridge will acknowledge the Proposal BPDU and configures its port in the appropriate state
 - Root, Alternate, Backup
 - If the bridge does not accept the proposal, it replies with its own BPDU with the Proposal bit set
 - The rest is the same
Convergence with RSTP: example (1)

- The Root Bridge adds a new link toward B1
 - Both ports put in Designated Discarding
 - BPDU + Proposal flag sent on the new link
 - Sync on the lower ports of B1
 - Ack from B1 allows RB to move its port in Forwarding State
 - B1 puts that link in forwarding state too
 - No loops can occur, since downstream ports of bridge A are still blocked
Convergence with RSTP: example (2)

- The process is repeated on B1-B2 and B1-B2
 - B1 will send a BPDU with the Proposal bit
 - Please note that upstream ports of B2 and B3 were still keeping their role until the BPDU is received
 - B2 and B3 put the other ports in SYNC state
 - Note that B2 does not have to block any port, while B3 will block only the link toward B4
 - They will accept the proposal
 - Port roles on B1-B2 will stay unchanged, while they will change on B1-B3
... and now the synchronization reaches B4

- B3 will send a BPDU with the Proposal bit
- However, B4 has a better path to reach the root bridge
- So, it sends a BPDU with the Proposal bit back
 - No SYNC occurs on B4, since its ports do no change role
- B3 will ack the proposal
- B3 will set its port as Alternate
The same example with STP

- RB adds a new link toward B1
 - Link goes into Listening (no data, no loops)
 - BPDU generated by root propagated down to B1, B2, B3
 - B1, B2, B3 update their STP Topology (e.g. Root Port)
 - B1, B2 and B3 were previously reachable through B4
 - All links involved still in blocking
 - B3 will move its lower port in Blocking state
 - B1, B2, B3 and their leaves unreachable for 2 * ForwardDelay
 - Link RB-B1 in Forwarding state after 2* Forward Delay

Note: the STP topology refers to the one before adding the link
Convergence with RSTP: some notes (1)

- An alternate path may be created in 10 – 20 ms
- Fast convergence relies upon
 - Ability to detect a failure in an reliable way
 - Ability to quickly detect a failure
 - Recovery based physical layer
- For this purpose the physical layer used are relevant
 - High stability due to reliable hardware parts
 - Intermittent failures may create stability issues
 - Transceiver able to locate a local or remote failure over point-to-point links
Convergence with RSTP: some notes (2)

- The explicit authorization sent in the SYNC process replaces the 2*Forward Delay of STP
- The final topology is exactly the one calculated by the STP
 - I.e., the blocked port will be exactly in the same place as before
 - Only the steps to obtain this topology have changed
- Explicit negotiation is possible only when bridges are connected by point-to-point links
 - I.e., full-duplex links unless explicit port configuration
RTSP Link Events: Recap

- **Link goes down**
 - Root Port
 - Promote best Alternate as Root
 - Promote itself as Root Bridge
 - Promote all ports as Designated
 - Designated Port
 - Do nothing
 - Edge Port
 - Do nothing
 - Alt/Backup Port
 - Do nothing

- **Link goes up**
 - Promote the port as Designated
 - Start P&A Sequence
 - Send Topology Change on all Root/Designated ports
 - Start P&A Sequence on those ports
Topology Change Detection (1)

- Only non-edge ports that move to Forwarding state cause a Topology Change
 - A loss of connectivity (a port moving to Blocking) is no longer considered a Topology Change
 - We may have useless MAC addresses in the filtering database, but this does not represent a problem

- A port that goes down does not generate a Topology Change, but obviously the bridge clears the Filtering Database entries associated to that port
Topology Change Detection (2)

- An RTSP bridge that detects a topology change (i.e., a port that goes in Forwarding State):
 - Starts the TC While timer (2*Hello Time) for all its non-edge active ports (i.e., Designated and Roots)
 - It flushes all MAC addresses associated to these ports
 - Note 1: it does not flush MAC addresses associated to Edge ports
 - Note 2: the TC While timer is much shorter than in STP
 - Propagates the BPDU with the TC bit on all the ports where the TC While timer is active, until it expires
 - RSTP no longer uses the specific TCN BPDU, unless a legacy bridge needs to be notified
 - The TCP BPDU, in fact, does no longer exist
Topology Change Propagation (1)

- When a bridge receives a BPDU with the TC bit set:
 - It starts the TC While timer on all its Designated and Root ports but the one on which it was received
 - It sends BPDUs with TC set on all the ports where the TC While timer is active
 - It clears the MAC addresses learned on all the ports where the TC While timer is active
 - I.e., it does not clear the entries on the port it received the TC bit
- TCN floods very quickly across the entire network
 - No longer needed to notify the Root Bridge (such as in the STP) in order to generate BPDUs with the TC set
 - No longer keep the “reduced” filtering database for $\text{<MaxAge + ForwardDelay>}$
Topology Change Propagation (2)

- A bridge clears the MAC addresses learned on all its ports, **except the one that receives the topology change**

Rational

- The TC is generated only *when a port on a remote bridge goes in Forwarding state*
- This means that we may have *more* MAC addresses associated to the local port compared to the ones we had previously
- So, we do not need to clear the entries already associated to that port, which will be still reachable on that port in the future
- The problems is on the other local ports ... MAC addresses associated to them may no longer be valid
Topology Change Propagation (3): example

- Example: link moved from RB to B3

- Host H1 MAC address was previously associated to port P1 of B1

- Why should B1 clear P3 entries in the FD?
 - There are no stale entries to clear on that port
 - Port P3 will see more hosts than before, but this does not mean we have to clear its entries

- What is important is to purge the stale H1 entry on port P1
 - Otherwise, traffic to H1 will be sent the wrong way till Aging Time
Topology Change Propagation and Edge ports

- TCN is not generated when an Edge port goes up
 - E.g., host H1 moving from bridge B3 to B2
- Host H1 is required to send a broadcast frame to update the Filtering Database of the switches

Diagram:
- RB
- B2
- B3
- H1

Network topology showing host H1 moving from bridge B3 to B2 and the broadcast frame being sent to update the Filtering Database.
RSTP: compatibility with STP (1)

- RSTP bridges may be configured to operate in STP mode
 - Vital if there is a repeater between bridges
- RSTP bridges switch automatically in STP mode when they detect one or more bridges operating in 802.1D
 - BPDUs received with the protocol version identifier field set to 0 are handled in a different way
- Migration delay timer (3 sec) starts when a port comes up
 - During this time, the current STP or RSTP mode associated to the port is locked
 - When the migration delay expires, the port adapts to the mode that corresponds to the next BPDU it receives
 - If the port changes its mode of operation as a result of a BPDU received, the migration delay restarts
Problems when mixing STP and RSTP (1)

- Problem 1: fast convergence is lost when operating in 802.1D
 - Even if we have all Full Duplex links

- Problem 2: an 802.1w bridge that starts operating in 802.1D compatibility mode may not be able to not turn back in 802.1w unless an explicit configuration is taken
 - In 802.1D BPDUs flows from the root to the edge
 - Even if the 802.1D edge goes down, there is no way to inform the upstream bridge that it should revert back in 802.1w
 - Look at the examples in the next slides
Problems when mixing STP and RSTP (2)

- Example 1
 - B1 has the Designated Port over the LAN
 - B1 receives a 802.1D BPDU from B2
 - Please note that B3 advertises itself as Designated Port, since it cannot understand the 802.1w BPDU generated by B1
 - B1 changes in compatibility mode and starts generating 802.1D BPDUs
 - B1 has the best BridgeID, hence B2 will put its port in Blocking State
 - Since B2 will not generate BPDUs on its port, B1 will stay in 802.1w mode forever since it has no way to detect the (possible) death of B2
 - Manual intervention is required to restart B1 (so that it will run in 802.1w mode) in this case
Problems when mixing STP and RSTP (3)

- **Example 2**
 - B2 has its port in Blocking state
 - B1 is the Designated Bridge for the LAN
 - The Designated Bridge has to be re-elected when B1 dies
 - B2 brings its port to up and waits for the Migration Timer
 - No other BPDUs are received, so it will generate 802.1w BPDUs
Problems when mixing STP and RSTP (4)

- Problem 3: network instability (e.g., loops)
 - A switch may send 802.1D BPDUs on some ports, and 802.1w BPDUs on some other ports
 - An RTSP bridge sends 802.1D BPDUs only on the port a 802.1D BPDU was received
 - The RTSP portion of the network will enable the forwarding of data frames in a matter of seconds (usually < 3 seconds)
 - The STP portion of the network is still well away from converging
 - Possible packets duplication
 - Possible receipt of *out-of-sequence* packets
 - Some (transient) loops can occur

- Be careful when using protocols that assume a L2 “traditional” connectivity!
 - They cannot manage out of order and duplicated packets
 - Better to disable RTSP mode
Default Path Costs

- Original 802.1w Path Costs have been replaced by 802.1t

<table>
<thead>
<tr>
<th>Port speed</th>
<th>Recommended Value</th>
<th>Recommended range values</th>
</tr>
</thead>
<tbody>
<tr>
<td><= 100Kb/s</td>
<td>200.000.000</td>
<td>20.000.000 – 200.000.000</td>
</tr>
<tr>
<td>1 Mb/s</td>
<td>20.000.000</td>
<td>2.000.000 – 20.000.000</td>
</tr>
<tr>
<td>10 Mb/s</td>
<td>2.000.000</td>
<td>200.000 – 2.000.000</td>
</tr>
<tr>
<td>100 Mb/s</td>
<td>200.000</td>
<td>20.000 – 200.000</td>
</tr>
<tr>
<td>1 Gb/s</td>
<td>20000</td>
<td>2.000 – 20.000</td>
</tr>
<tr>
<td>10 Gb/s</td>
<td>2000</td>
<td>200 – 20000</td>
</tr>
<tr>
<td>100 Gb/s</td>
<td>200</td>
<td>20-2000</td>
</tr>
<tr>
<td>1 Tb/s</td>
<td>20</td>
<td>2-200</td>
</tr>
<tr>
<td>10Tb/s</td>
<td>2</td>
<td>1-20</td>
</tr>
</tbody>
</table>
Problems due to the fast RSTP reactivity

- RTSP works perfectly when the physical layer is reliable
- When this condition does not hold, some problems may appear
- Example
 - A link goes up and down frequently because of a dirty connector
 - RTSP reconfigures the network at each change of status of the link
 - The network will stay in a transient state most of the time
- Possible solution: enable a proprietary “antiflapping” mechanism on the link
 - E.g. Cisco put ports in “error disable” state when detects link flapping
 - The port must be re-enabled manually from management
- Lesson learned: fast reactivity is not always a good thing
Conclusions

- Efficient
- Fast convergence (often < 1s)
- Can replace many proprietary protocols
- Possibility to mix devices from different vendors
- Interoperability problems with STP
 - Mostly used with Multiple Spanning Tree (MST)