Lab 1: Filtering database

Fulvio Risso, Politecnico di Torino

March 9, 2011
1 Introduction

In this lab assignment we are going to simulate a configuration with two routers and three switches in order to analyze the behavior of the Backward learning algorithm and check the changes in the Filtering database of the switches.

2 Topology

The topology for this assignment is represented in the following picture:

R1 and R2 are Cisco 2691 routers that behave as hosts, acting as the source and the destination of a ping. Instead, S1, S2 and S3 are Cisco 2691 devices acting as switches. In fact, they are equipped with the optional NM-16ESW Etherswitch module that provides switched interfaces, transforming a router into a switch (on those interfaces, while the native interfaces of the router are still routed interfaces).

3 Preparing the lab configuration

Log-in in the DynNG web site, download the file PRL-Lab1.net, open it in GNS3 and start the machines. Press the Telnet to all IOS button on the toolbar to open the configuration consoles of routers and switches.

3.1 Routers (R1 and R2)

In this step you are going to set up the FastEthernet0/0 interfaces in the routers, which will provide the source and the destination addresses for the ping transaction required in this lab assignment. For instance, you will not use the R1 and R2 as routers; they will act as simple hosts instead.

The following instructions apply to both R1 and R2.

• Enter the interface configuration mode for FastEthernet0/0:
enable
configure terminal
interface FastEthernet0/0
• Due to a bug in the simulator, the speed on a link between a routed and a switched interface is not negotiated automatically. Hence, you have to set it up manually here:
 speed 100
duplex full
• It is important to disable the keepalive functionality of the interface, since it will interfere with the filtering database (when the keepalive functionality is enabled, the router periodically transmits LOOP packets which will be recorded by nearby switches, filling their filtering database. In a normal condition this would be good, but not in this lab assignment).
 no keepalive
• Now you are going to setup the IP addresses for the interfaces:
 ip address 192.168.0.1 255.255.255.0 (on R1)
 ip address 192.168.0.2 255.255.255.0 (on R2)
• Turn the interface up by typing:
 no shutdown

Additionally, we suggest to set a static entry in the ARP cache of the routers to let they know each other interfaces’ physical address, hence avoiding a broadcast packet (the ARP Request) before the ping transaction. First you need to determine the MAC address of the two FastEthernet0/0 interfaces.

• Exit from the configuration mode by typing
 end
Then show the characteristics of the network interface by typing
 show interface FastEthernet0/0
The second line should look similar to the following:

 Hardware is Gt96k FE, address is <address> (bia <address>)

• Copy the address you see. If you typed the show interface command in the R1 console, go to the R2 console and write¹:
 configure terminal
 arp 192.168.0.1 <address> arpa

• Then use the show interface command in R2 and configure R1’s ARP cache. Check if everything is right by exiting the configuration mode and typing show arp in the privileged mode. On R1 you should see something like this:

<table>
<thead>
<tr>
<th>Protocol</th>
<th>Address</th>
<th>Age (min)</th>
<th>Hardware Addr</th>
<th>Type</th>
<th>Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet</td>
<td>192.168.0.1</td>
<td>-</td>
<td>c003.54a8.0000</td>
<td>ARPA</td>
<td>FastEthernet0/0</td>
</tr>
<tr>
<td>Internet</td>
<td>192.168.0.2</td>
<td>-</td>
<td>c004.54a8.0000</td>
<td>ARPA</td>
<td></td>
</tr>
</tbody>
</table>

Note: Since hardware addresses may change among different simulation runs, you may need to repeat this step if you save and later reload the configuration.

¹Obviously, the word <address> in the reported command must be replaced by the MAC address learned in the previous step.
3.2 Switches (S1, S2 and S3)

Here you are going to manually “break the loop” among the switches and then disable the spanning-tree protocol, entering in a condition in which broadcast storms are not possible (since the physical topology does not have loops). From this point on, the instructions are going to be less “verbose” leaving you a little more to think about how to do things.

- On the S1 switch configure the FastEthernet1/3 interface (it is on the link connecting S1 to S3). Shut it down to break the loop.

Perform the following operations on all the switches:

- Disable the spanning tree protocol:

  ```
  no spanning-tree vlan 1
  ```

- Make the entries in the filtering database expire quickly (30 seconds instead of 5 minutes):

  ```
  mac-address-table aging-time 30
  ```

This step is not strictly required, but it facilitates the lab since it allows the switches to return in their initial conditions quickly, without having to wait for 5 minutes.

4 Analysis of the Filtering Database

The setup of the lab is now done. We can begin the real work of this assignment.

1. Obtain the hardware address of all the active interfaces and list the obtained interfaces and their corresponding addresses in your lab report. Repeat this step for all switches (S1, S2 and S3).
 Tip: A useful command is `show interface`.

2. Read the filtering database on S1, S2 and S3. Use the following command in the privileged mode:

   ```
   show mac-address-table
   ```

3. Are the MAC addresses listed at point (1) present in the filtering databases obtained at point (2)? Why?

4. Start the packet capture. Right-click on each of the links in the topology and choose `Capture`.

5. Ping R2 from R1. Please note that you have already configured R1 and R2 in such a way that MAC addresses of one another are already in their ARP cache (i.e., no ARP packet will be generated as a consequence of the ping command).
 Tip: the `ping` command is available on Cisco routers when in privileged mode.

6. Stop the capture. Right-click on each of the links and choose `Stop the capture`. Open the webpage assigned to your group for the capture files and download them. You will have to attach a snapshot of those files to your report.

7. Check again the filtering database on S1, S2 and S3. Are the MAC addresses listed at point (1) present in the filtering databases obtained right now? Why? Are there any other MAC address present? Which interfaces do they refer to?

8. Why S2 and S3 do not learn the MAC address of the FastEthernet0/0 interface of R2?
5 Loop detection

Warning! The commands you are going to enter will generate a broadcast storm which could make the switches unavailable (i.e., you could be no longer able to interact with the switch!). This may in turn break the hypervisor, needing a manual restart that you can not perform remotely (and you will be cut out of the lab until someone restarts it). Also, this may interfere with other groups’ simulation. So, please, pay attention on what you do!

1. Re-enable the FastEthernet1/3 interface on S1 in order to re-activate a physical loop among the switches (command: no shutdown). Please note that you are now in a condition in which the broadcast storm is possible, since you have a physical loop among the switches and the spanning tree protocol is not active.

2. Stay in the interface configuration mode on S1’s console and type shutdown without pressing return, so that the command is ready to be entered. Do not launch it now, but prepare yourself to do so quickly, as soon as it will be needed.

3. Read this step entirely before executing it.
 - Start the packet capture on all the links in the topology.
 - Go to R1’s console. Ping R2 from R1.
 - Go back immediately to the S1’s console and enter the shutdown command that you prepared before.
 - Stop the capture.

4. Download the capture files (they might be big). Include them with your report.

5. Please explain the differences of this capture from the one obtained at point (3.6) and motivate the reason of these differences.