The 802.1x specification

Fulvio Risso
Politecnico di Torino

Based on an existing presentation of Piero Nicoletti
IEEE 802.1x

- Port-Based Network Access Control
 - Use physical access characteristics of IEEE 802 LAN infrastructures in order to provide a means of authenticating and authorizing devices attached to a LAN port
 - Prevent access to that port in case the authentication and authorization process fails
 - Connection must be point-to-point (similar in some sense to Dial-Up)

- Can be implemented on Ethernet Switches and Wireless Access Points
802.1x entities (1)

- **Supplicant**
 - Entity that has access to a network port
 - Includes an identity and some credentials in order to prove that it is who it claims to be

- **Authenticator**
 - Network device that provides access to the network (e.g., Ethernet Switch, WiFi Access Point)
 - Does not know whether an entity can be allowed to be part of the network
 - Referred to as the *network access server (NAS)* or Remote Address Dial-In User Service (RADIUS) client
802.1x entities (2)

- **Authentication Server**
 - Server that checks and validates user credentials (e.g., RADIUS)

- **Port Access Entity (PAE)**
 - Protocol entity associated to authenticator, supplicant or both
802.1x: protocol framework
Extensible Authentication Protocol (EAP)

- Defines a generic mechanism for exchanging authentication messages, which is transported by different technologies
 - Username / password, challenge / response token, public key certificates, etc.
 - Separates the message exchange from the authentication process (authentication-independent messages)
 - New authentication mechanisms can be deployed without a corresponding change in the EAP layer
EAP messages: general frame format

- 4 messages, two frame formats
EAP messages: Request/Response frame
EAP messages: success/failure

![Diagram showing EAP message structure with code and identifier](image-url)
Identity exchange related to EAP (may be in clear text). Optional. Better if each protocol has its own identity-recognition mechanism.
EAP and 802.1x

- 802.1x = EAP over 802
 - 802.1x is a standard that transports EAP messages over LAN
 - Similar to the capabilities of PPP at the beginning of the connection
 - EAP in 802.1x is called EAP encapsulation over LANs (EAPOL)

- The Authenticator may be a very simple device
 - Should simply copy EAP messages that come from the LAN to the Authentication Server
 - Does not have to understand the semantic of EAP messages; only Supplicant and Authentication Server must
Radius

- R.A.D.I.U.S.: **Remote Authentication Dial-In User Service** protocol is used to exchange authentication message from Authenticator and Server

 - The client is responsible for passing user information to designated RADIUS servers, and then acting on the response which is returned

 - RADIUS servers are responsible for receiving user connection requests, authenticating the user, and then returning all configuration information necessary for the client to deliver service to the user

 - RADIUS protocol has been used in the past by Internet Service Providers to authenticate users connected via Dial-Up line to the Access Server
802.1x function and protocols used to authenticate supplicant

- Protocol used for communication between Authenticator and Authenticator Server:
 - EAP (Extensible Authentication Protocol) over RADIUS protocol
 - RADIUS is a Layer 7 protocol (application layer)
- Protocol used for communication between Supplicant and Authenticator
 - EAPOL that means EAP Over LAN
 - Is a Layer 2 Protocol because the supplicant may not have an IP address until is authenticated and has been received the IP address by DHCP Server
Authentication elements
802.1x Authentication Model

PC
(Supplicant)

EAPOL
(layer 2)

Access Point
or Switch
(Authenticator)

802.1x
Functions

EAP over
RADIUS
(layer 7)

RADIUS
Authentication
Server

Communications for Authentication
Use of Controlled & Uncontrolled Port

- Uncontrolled Port is the entity used for service packets exchange her necessary to establishing the authorization or the access prohibition.
Authorized & Unauthorized port

- Authenticator System 1
 - Controlled Port
 - Uncontrolled Port
 - Port Unauthorized

- Authenticator System 2
 - Controlled Port
 - Uncontrolled Port
 - Port Authorized
Access based on Authentication & Address MAC
EAP protocol

- PPP Extensible Authentication Protocol (EAP) defined in RFC 2284
 - Protocol code EAP = c227
 - Support multiple authentication mechanisms without needing to pre-negotiate a specific mechanism during the LCP phase
 - PPP was originally only supporting authentications based up
 - PAP (Authentication Protocol password), protocol code c023
 - CHAP (Authentication Protocol handshake Challenge), c223 protocol code
EAP frame

1 Request
2 Response
3 Success
4 Failure

EAP Header

EAP Payload
Such as TLS, MD5...
EAPOL frame

- EAPOL frames are transmitted to the multicast address 01-80-C2-00-00-03

- The EAPOL frame on Ethernet v 2.0:
 - the code protocol inserted in the Type field is 88-8E

<table>
<thead>
<tr>
<th>PREAM.</th>
<th>SFD</th>
<th>DSAP</th>
<th>SSAP</th>
<th>TYPE 88-8E</th>
<th>DATA</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ottetti 7</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>da 46 a 1500</td>
<td>4</td>
</tr>
</tbody>
</table>
EAPOL over Ethernet V 2.0 frame

Bytes 7 1 6 6 2 da 46 a 1500 4

Protocol Vers. Packet Type Packet body length Packet body
01 H 1 byte 2 byte
00H EAP-Packet
01H EAPOL-Start
02H EAPOL-Logoff
03H EAPOL-Key
04H EAPOL-Encapsulated-ASF-Alert.
EAPOL over 802.x frames

Protocol Identifier

DSAP SSAP CONTROL
0AA 0AA 03

INFORMATION

Protocol Vers.
01 H

Packet Type
1 byte

Packet body length 2 byte

Packet body

00H EAP-Packet
01H EAPOL-Start
02H EAPOL-Logoff
03H EAPOL-Key
04H EAPOL-Encapsulated-ASF-Alert.
EAP & EAPOL over wireless networks
EAP Authentication method

- TLS
- EAP SIM
- TTLS
- PEAP
- EAP-FAST
- LEAP

EAP

EAPOL

802.3

802.11
LEAP (Lightweight Extensible Authentication Protocol)

- EAP-Cisco Wireless Authentication protocol based on “username e password” sent via MS-CHAP without the digital certificates
- Easy and fast to configure because don’t need the certificates management
- Limits:
 - Need interface drivers that support LEAP
 - Supported only in wireless NIC
EAP-TLS

- Mutual Authentication (client and server)
- Based on Digital Certificates for Server and Client
 - The server have the CA (Certification Authority) and the Server Certificate
 - The Client have the CA (Certification Authority) and the Client Certificate
 - Is necessary to generate the CA Certificate, The Server Certificate and the Clients Certificates (one ore more)
- The data sent during authentication process are exchanged in a secure encrypted tunnel
EAP-TTLS

- Similar EAP-TLS
- Only CA and Server Certificate are necessary
- The client authentication is based on:
 - CA Certificate and specific client Authentication based on:
 - Username/Password CHAP, MSCHAPv2, MD5
Protected Extensible Authentication Protocol (PEAP)

- Based on EAP-TTLS Authentication Method:
 - Phase 1: establish a secure tunnel through EAP-TTLS authentication
 - Phase 2: realize the supplicant authentication based on EAP protocol plus other specific information of PEAP

- Only CA and Server Certificate are necessary

- The client is authenticated via:
 - CA Certificate and Username/Password MSCHAPv2
WPA (WiFi Protected Access)

- WPA is a standard-based security solution from the WiFi Alliance that addresses the vulnerabilities in native WLANs.
- WPA provides enhanced data protection and access control for WLAN systems. WPA addresses all known Wired Equivalent Privacy (WEP) vulnerabilities in the original IEEE 802.11 security implementation and brings an immediate security solution to WLAN networks in both enterprise and small office, home office (SOHO) environments.

- Use Pre Shared Key (WPA-PSK) for Authentication and Data Encryption
 - WPA-PSK may be in Hexadecimal format or ASCI format (also known as Pass Phrase)
WPA2 / 802.11i

- WPA 2 is the next generation of Wi-Fi security. WPA 2 is the Wi-Fi Alliance interoperable implementation of the ratified IEEE 802.11i standard.
- WPA 2 implements the National Institute of Standards and Technology (NIST)-recommended Advanced Encryption Standard (AES) encryption algorithm with the use of Counter Mode with Cipher Block Chaining Message Authentication Code Protocol (CCMP).
 - AES Counter Mode is a block cipher that encrypts 128-bit blocks of data at a time with a 128-bit encryption key.
WPA2 / 802.11i: Server Radius or PSK

- Normally WPA2 use RADIUS Server for Authentication and Encryption Key Generation
- Can even work with Pre Shared Key (PSK) which can long up to 256 bits (64 Hexadecimal digit)
 - Same PSK used on AP and Clients
 - **pass-phrase** can be use instead of hexadecimal number sequence the standard suggest to use a pass-phrase with minimum 20 characters for security
Authentication Systems Compare

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
<th>Authentication Attributes</th>
<th>WEP key generation?</th>
<th>Wireless Security</th>
<th>Deployment Difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>MD5</td>
<td>Challenge-based password</td>
<td>One-way Authentication</td>
<td>NO</td>
<td>Weak</td>
<td>Easy</td>
</tr>
<tr>
<td>LEAP</td>
<td>Cisco LEAP algorithm (Challenge-based password)</td>
<td>Mutual Authentication</td>
<td>YES</td>
<td>Stronger than MD5 weaker than other EAP solutions</td>
<td>Moderate</td>
</tr>
<tr>
<td>TLS</td>
<td>Certificate-based two-way authentication</td>
<td>Mutual Authentication</td>
<td>YES</td>
<td>Strongest</td>
<td>Hard</td>
</tr>
<tr>
<td>TTLS</td>
<td>Server authentication via certificate, client via other method</td>
<td>Mutual Authentication</td>
<td>YES</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
<tr>
<td>PEAP</td>
<td>Server authentication via certificate, client via other EAP-method</td>
<td>Mutual Authentication</td>
<td>YES</td>
<td>Strong</td>
<td>Moderate</td>
</tr>
</tbody>
</table>
Dynamic VLAN Assignment &
802.1 x Extensions
Dynamic VLAN Assignment

- An extension of the 802.1x standard specifications:
 - The new version of 802.1x 2004 define a new type VLAN assignment “authentication based”
 - RFC 2868 of 2000 and above all RFC 3580 of 2003 define some new RADIUS protocol attributes (AV = Attribute Value)
- Through this new function the assignation of VLAN can be done:
 - Per Port
 - Per Protocol
 - Authentication based
Advantages of Dynamic VLAN Assignment based on authentication

- Simplifies the network operators' work
 - They do not need change the configuration of VLAN on the ports following the users witch are moving
 - The user's VLAN depends on his credentials
 - The users' ports are set up for the dynamic assignment based on the authentication
 - The user wherever moves in the network keep the credentials for his VLAN
 - Easy to manages VLAN Guest for the guests in switched and wireless networks
Advantages of Dynamic VLAN Assignment based on authentication

- Increases the security on the business Switch-eLAN
 - Not authenticated user is put on quarantine VLAN
 - Every user connected to the network is identified (certificates, username, password) by his credentials

![Diagram of Switch applying policies and enabling port.]

- User has access to DMZ or "Quarantine" network.
- Login Request
 - Switch applies policies and enables port.
 - Set port VLAN to 100 - DMZ
 - Authentication timeout.
 - Retries expired.
 - Client is not 802.1x capable.
 - Put them in the quarantine zone!
RADIUS protocol and new attributes

- New RADIUS attributes:
 - Tunnel-Type=VLAN (13)
 - Tunnel-Medium-Type=802 (6)
 - Tunnel-Private-Group-ID=VLANID (xxxx)
RADIUS Protocol: Tunnel type

- 1. Point-to-Point Tunneling Protocol (PPTP) [1]
- 2. Layer Two Forwarding (L2F) [2]
- 3. Layer Two Tunneling Protocol (L2TP) [3]
- 5. Virtual Tunneling Protocol (VTP)
- 6. IP Authentication Header in the Tunnel-mode (AH) [5]
- 7. IP-in-IP Encapsulation (IP-IP) [6]
- 9. IP Encapsulating Security Payload in the Tunnel-mode (ESP) [8]
- 10. Generic Route Encapsulation (GRE) [9]
- 11. Bay Dial Virtual Services (DVS)
- 12. IP-in-IP Tunneling [10]
- 13. Virtual LANs (VLAN)
RADIUS Protocol: Tunnel-Medium type

- 1 IPv4 (IP version 4)
- 2 IPv6 (IP version 6)
- 3 NSAP
- 4 HDLC (8-bit multidrop)
- 5 BBN 1822
- 6 802 (includes all 802 media plus Ethernet "canonical format")
- 7 E.163 (POTS)
- 8 E.164 (SMDS, Frame Relay, ATM)
- 9 F.69 (Telex)
- 10 X.121 (X.25, Frame Relay)
- 11 IPX
- 12 Appletalk
- 13 Decnet IV
- 14 Banyan Vines
- 15 E.164 with NSAP format subaddress
Dynamic VLAN assignment configuration

- On the Switch:
 - Specify VLAN Assignment authentication based
 - Specify a parking VLAN for non-authorized users

- On RADIUS Server config file add the following parameters
 - Tunnel-Type=13
 - Tunnel-Medium-Type=6
 - Tunnel-Private-Group-ID=xxxx
Configuration example on HP switch

- aaa authentication port-access eap-radius
- radius-server host 10.200.150.5 key test12345
- aaa port-access authenticator 4 (port 4 of the switch)
- aaa port-access authenticator 4 unauth-vid 100
 - Parking VLAN is: VLAN 100
FreeRadius configuration example

- File /etc/raddb/user
 - Users: off, connect, stealth
 - Part of User Local Data Base
 - off Auth-Type := Local, User-Password == "invisibile"
 Tunnel-Type = 13,
 Tunnel-Medium-Type = 6,
 Tunnel-Private-Group-Id = 2
 - connect Auth-Type := EAP
 Tunnel-Type = 13,
 Tunnel-Medium-Type = 6,
 Tunnel-Private-Group-Id = 1
 - stealth Auth-Type := EAP
 Tunnel-Type = 13,
 Tunnel-Medium-Type = 6,
 Tunnel-Private-Group-Id = 2
VLAN and Users

- VLAN and Users in the previous example:
 - **off** = VLAN 2
 - (authentication based on MD5 or PEAP Username/Password)
 - **connect** = VLAN 1
 - authentication based on EAP-TLS
 - **Stealth** = VLAN 2
 - authentication based on EAP-TLS
 - Users not authenticated are in Parking VLAN 100
Dynamic VLAN assignment limits

- If a hub or a VLAN-Unaware switch is connected to a switch port with dynamic VLAN enabled and if user authenticates himself, the switch port is opened and also other users can connect in network through that authenticated port
Port Security to prevent intrusion

- On new switch, as for instance the recent ones of Cisco and HP, it is possible to configure the switch to accept a single MAC address for port.
 - Is possible to define the MAC address enabled to the access.
 - The can accept only the first MAC address seen on the port (typically that of PC which authenticates himself)

 - Example on HP Switch

 - Configure port A1 to automatically accept the first device (MAC address) it detects as the only authorized device for that port. (The default device limit is 1.) This command also configures the port to send an alarm to a network management station and disable itself if an intruder is detected on the port.

 ProCurve(config)# port-security a1 learn-mode static action send-disable
How to increase the security

- To increase the security on port the switch can periodically repeat the user's authentication
 - Example on HP switch
 - aaa port-access authenticator 4 reauth-period 30
 - Switch repeat the authentication on port 4 every 30 second