Ethernet evolutions

Fulvio Risso

Politecnico di Torino
Introduction (1)

- Ethernet was very successful
 - On the wired side, basically no competitors
- Necessity of more speed
 - FDDI was used to create backbones, but expensive and not appropriate for desktops
- However, we need to
 - Keep compatibility with frame format
 - Preserve investments in human workforce
 - Hard to convert people to new technologies
Introduction (2)

- Fast Ethernet was defined
 - At the beginning, slow adoption
 - FDDI better for backbone (robustness and network diameter)
 - No such need of speed at the desktop
 - Later, Gigabit Ethernet
 - Mainly for backbones, now also for desktop
 - Now, 10GB Ethernet
 - Intended to cover MANs as well
- Even faster Ethernet are in the pipeline
Fast Ethernet: IEEE 802.3u (1)

- Characteristics
 - Same frames, same CSMA/CD algorithm

- Physical layers
 - 100BASE-T4 (twisted pair cable, 4 pairs)
 - 8B/6T: 37.5MHz
 - 100BASE-TX (twisted pair cable, 2 pairs)
 - 4B/5B + MLT-3: 31.25MHz
 - 100BASE-FX (fiber)
 - 4B/5B
 - TX, FX: derived from TP-PMD/PMD of FDDI (ISO 9314-3) with minor modifications
 - Other standards have been defined, but never implemented
 - The existing ones worked extremely well
Fast Ethernet: IEEE 802.3u (2)

- Differences
 - 10x increase in speed
 - Data Rate 100Mb/s
 - Bit time 10ns
 - Inter-frame gap 0.96μs
 - Slot time 5.12μs (512 bits / 64 bytes)
 - /10 in distance (200m + 20m)
 - Reduced collision domain
 - Basically, Host – hub – host
 - Rather limiting
 - Introduces “Full Duplex” mode
 - No CSMA/CD on that link
Fast Ethernet topology (1)

- Limited network size, but still usable
 - Compatible with structured cabling limits (100m)
Fast Ethernet topology (2)

- Bridges/switches becomes common in those times
 - No CSMA/CD → less limitations to the network limit
 - The limit becomes the attenuation on cables
- Very complex topologies (several bridges in cascade)
Auto negotiation (1)

- Auto negotiation possibilities:
 - speed (only over copper)
 - half/full duplex (over copper and fiber optic)

- Negotiation sequence:
 - 1 Gb/s full-duplex
 - 1 Gb/s half-duplex
 - 100 Mb/s full-duplex
 - 100 Mb/s half-duplex
 - 10 Mb/s full-duplex
 - 10 Mb/s half-duplex
Auto negotiation (2)

- Possible only if connected to another host, or to a bridge/switch
 - Hubs operate at fixed speed; hence, cannot negotiate anything!
- If, during the procedure, the other party does not respond, the negotiating station assumes it is connected to an hub
 - Fixed setting on one side may lead to unexpected errors

Example

- One side: fixed 100Mbps Full Duplex
- The other party does not receive any message and it will assume it is connected to an hub
 - It will configure the interface in 100Mbps Half Duplex
 - There may be tons of false collisions on that host
Gigabit Ethernet: IEEE 802.3z (1)

- 1Gbps (10x in speed, /10 in distance)

- Characteristics
 - Same frame
 - Required to maintain interoperability with other Ethernet standards
 - Same format, 64/1536 bytes frame size
 - In principle, same CSMA/CD algorithm
 - Although collision domain ~20m
 - Network diameter extremely small
 - Compatibility at frame level is more important than compatibility at CSMA/CD level
 - In fact, Gigabit Ethernet will modify the CSMA/CD algorithm
Gigabit Ethernet: IEEE 802.3z (2)

- Brings more modifications compared to FastEthernet
 - CSMA/CD
 - No longer used in practice
 - Full duplex is the standard operating mode
 - Introduced with FastEthernet, but initially CSMA was still largely used
 - No GE devices have been made which support CSMA/CD
 - Increased slot time, Carrier extension
 - Frame bursting

- Why Gigabit Ethernet?
 - Well, hardware is cheap
 - Market demand (and vendor offer)
 - May be useful in the server domain and for backbone links
Gigabit Ethernet: “transmission” length

- The minimum frame size of 64 bytes is limiting the network diameter
 - Need to increase the minimum duration of the transmission
 - “Min duration of the transmission” is different from “minimum frame size”
 - In fact, cannot increase minimum frame size (for compatibility)
 - If so, how can we transport a 64B Ethernet frame into GE?
 - We increase the slot time

- The maximum frame of 1536 bytes is obsolete
 - In Ethernet, 1536 bytes → 1.2ms channel occupancy
 - Reasonable for guaranteeing statistical demultiplexing
 - Cannot increase the maximum frame size
 - If so, how can we transport a large GE frame into Ethernet?
 - We concatenate several frames one after the other: frame bursting
Gigabit Ethernet Slot Time

- Increased to 512 bytes
 - ~200m diameter (star-based topology: 100m + hub + 100m)

<table>
<thead>
<tr>
<th></th>
<th>Ethernet</th>
<th>Fast Ethernet</th>
<th>Gigabit Ethernet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transmission speed</td>
<td>10 Mbps</td>
<td>100 Mbps</td>
<td>1 Gbps</td>
</tr>
<tr>
<td>Bit time</td>
<td>100 ns</td>
<td>10 ns</td>
<td>1 ns</td>
</tr>
<tr>
<td>Inter-frame gap</td>
<td>9.6 us</td>
<td>0.96 us</td>
<td>96 ns</td>
</tr>
<tr>
<td>Slot time</td>
<td>51.2 us</td>
<td>5.12 us</td>
<td>4.096 us</td>
</tr>
</tbody>
</table>
Carrier Extension

- Extends short frames to min 4096 bit times
 - Predefined sequence of symbols
 - Valid at physical layer, but not used when transporting Eth data

<table>
<thead>
<tr>
<th>Preamble</th>
<th>SFD</th>
<th>MAC Dest.</th>
<th>MAC Source</th>
<th>Len./Type</th>
<th>Data</th>
<th>FCS</th>
<th>Extens.</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>1</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>46 - 1500</td>
<td>4</td>
<td>0 - 448 (3584 bit)</td>
</tr>
</tbody>
</table>

- **FCS coverage**
- **Min frame size (64 bytes, 512 bit times)**
- **Min transmission length (512 + 3584 = 4096)**

Collision window
Frame Bursting (1)

- Gigabit Ethernet allows an host to transmit several consecutive frames without releasing the channel
 - Burst-limit equal to 65536 bit (8192 bytes) + 1 frame
- Advantages
 - Carrier extension (optionally) present only after the first frame
 - No “lost” time in contention after each frame (only after the burst)
 - Throughput increases especially in case of short frames
 - The maximum frame size is still 1536 bytes
Frame Bursting (2)

Mechanism

- First frame must have at least min size (i.e. must be be extended if shorter than slot time)
- Replace Inter-Frame Gap with an appropriate Filling Extension
 - Required in order to delimit frames
 - Always 96 bit times
- Other hosts must wait till the frame ends (with IFG)
- All frames include SFD, Preamble and the actual frame

```
Frame 1 (+ extension)  IFG + FILL  Frame 2 (no ext)  IFG + FILL  IFG + FILL  Frame N (no ext)  IFG
```

Burst limit (65536 bits)
Working modes

- Shared mode (i.e., CSMA/CD) to be used with repeaters
 - Not used
 - Not implemented by any commercial products
- Usually used in full duplex mode
 - No carrier extension
 - Collisions does not exist
 - No burst mode
 - Contention does not exist
Gigabit Ethernet: Physical layer

<table>
<thead>
<tr>
<th>Standard</th>
<th>Media</th>
<th>Use</th>
<th>Max length</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000BASE-SX</td>
<td>MMF 50/125 um (400 MHz * Km a 850nm)</td>
<td>2 fibers</td>
<td>500 m</td>
<td>FC: 8B10B</td>
</tr>
<tr>
<td></td>
<td>MMF 50/125 um (500 MHz * Km a 850nm)</td>
<td></td>
<td>550 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF 62.5/125 um (160 MHz * Km a 850nm)</td>
<td></td>
<td>220 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MMF 62.5/125 um (200 MHz * Km a 850nm)</td>
<td></td>
<td>275 m</td>
<td></td>
</tr>
<tr>
<td>1000BASE-LX</td>
<td>MMF 50/125 um (400/500 MHz * Km a 1300nm)</td>
<td>2 fibers</td>
<td>550 m</td>
<td>FC: 8B10B</td>
</tr>
<tr>
<td></td>
<td>MMF 62.5/125 um (500 MHz * Km a 1300nm)</td>
<td></td>
<td>550 m</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SMF 10/125 um</td>
<td></td>
<td>5000 m</td>
<td></td>
</tr>
<tr>
<td>1000BASE-CX</td>
<td>STP 2 pairs</td>
<td>25 m</td>
<td>FC: 8B10B</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(jumper cable) 150 Ohm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1000BASE-T</td>
<td>UTP 4 pairs</td>
<td>100 m</td>
<td>PAM5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>balanced 100 Ohm Cat. 5E</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MMF = Multi Mode Fiber
SMF = Single Mode Fiber
1000BASE-T (IEEE 802.3ab)

- Full-duplex transmission over 4 pairs
 - 250 Mb/s per pair
 - Hybrid transformers

- PAM5 Line coding (5-level Pulse Amplitude Modulation)
 - A signal of 5 different levels is transmitted over the 4 pairs
 - $5^4 = 625$ possible symbols, of which only 256 are valid
 - Each pair transports 2 bits \rightarrow 125 Mbaud (250Mbps) per pair
 - Redundancy used for control codes

- Compared to the tests defined by TIA/EIA ISB95, Cat 5 UTP has to pass additional tests
1000BASE-X

- Sub Standard
 - 1000BASE-CX (copper short range)
 - 1000BASE-SX (short wavelength)
 - 1000BASE-LX (long wavelength)

- Based on Fiber Channel (FC) Physical Layer
 - Code 8B10B
 - Redundancy code: control symbol and transitions
1000BASE-CX connectors

Type 1 connector
1: Transmission +
6: Transmission -
Shell: shield
5: Reception -
9: Reception +

Type 2 connector
1: Transmission +
3: Transmission -
6: Reception -
7: Reception +

Type 2 connector socket
1000BASE-SX and 1000BASE-LX connectors
Wave-Length and standard

Visible Light

I Window 850nm
II Window 1310nm
III Window 1550nm

Attenuation (dB/km)

Wave-Length

1000BASE-SX
1000BASE-LX
1000BASE-LX & multimode fiber: Mode Conditioning Patch Cord

Junction between SMF and MMF fiber

MMF = Multi Mode Fiber
SMF = Single Mode Fiber
Non standard products

- 1310 nm single-mode fiber: 10 Km
 - Example Cisco GBIC 1000BASE-LX/LH
- 1550 nm single-mode fiber dispersion shift: 100 Km
 - Example Cisco GBIC 1000BASE-LZ
- Interoperability between products of different vendors is not guaranteed
10 Gigabit Ethernet - IEEE 802.3ae

- IEEE 802.3 frame
- Full-duplex mode
 - No repeater
 - No CSMA/CD
 - No carrier extension
- Keep Ethernet’s good reputation
 - 10 times more efficient
 - 3 times more expensive
- Break into metropolitan network (MAN) and wide area network (WAN) markets
 - Price/Bandwidth ratio is better than traditional solutions (e.g. SONET/SDH)
WAN PHY

- Enables transport over existent MAN and WAN infrastructure
 - DWDM (Dense Wavelength Division Multiplexing)
- Enables existent MAN and WAN component reuse
 - SONET/SDH transceiver and circuitry
- Different transmission speed (9.6 Gb/s) respect to LAN PHY’s speed
- WAN PHY and LAN PHY common properties → market is waiting for components with both functionalities
 - 10GBASE-R and 10GBASE-W in particular
- WIS (WAN Interface Sublayer) tunes PCS’ signal
 - Bit scrambling
 - SONET/SDH headers
10GE frame over SONET/SDH

STS-192c = Synchronous Transport Signal – of level 192, c = concatenated
SPE = Synchronous Payload Envelope
10GE and SONET/SDH

- Simplified version of SONET/SDH
 - Avoid imposed complexities required by SONET/SDH
 - Limit component cost
 - Keeps resiliency (SONET or DWDM rings)
- Only some header’s fields are used
- High precision synchronization has been removed
 - No Stratum-1 clock (10^{-12} precision)
- Frames are generated and forwarded by 10GE devices in asynchronous mode using
 - SONET/SDH framing
 - Limited SONET/SDH management functionalities
Physical layer

<table>
<thead>
<tr>
<th>Standard</th>
<th>Fiber</th>
<th>Max length</th>
<th>Window</th>
<th>Usage</th>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>10GBASE-SR</td>
<td>Multimode 62.5 µm</td>
<td>26 – 33 m</td>
<td>850 nm</td>
<td>Building (horizontal wiring)</td>
<td>64B/66B</td>
</tr>
<tr>
<td></td>
<td>Multimode 50 µm</td>
<td>66 – 300 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10GBASE-LR</td>
<td>Monomode (10 µm)</td>
<td>10 Km</td>
<td>1310 nm</td>
<td>Area</td>
<td>64B/66B</td>
</tr>
<tr>
<td>10GBASE-ER</td>
<td>Monomode (10 µm)</td>
<td>40 Km</td>
<td>1550 nm</td>
<td>Metropolitan</td>
<td>64B/66B</td>
</tr>
<tr>
<td>10GBASE-LX4</td>
<td>Multimode 62.5 µm</td>
<td>300 m</td>
<td>1310 nm</td>
<td>Building (horizontal wiring)</td>
<td>FC 10G: 8B10B</td>
</tr>
<tr>
<td></td>
<td>Multimode 50 µm</td>
<td>240 – 300 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monomode (10 µm)</td>
<td>10 Km</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10GBASE-SW</td>
<td>Multimode 62.5 µm</td>
<td>26 – 33 m</td>
<td>850 nm</td>
<td>Building (horizontal wiring)</td>
<td>64B/66B SONET/SDH framing</td>
</tr>
<tr>
<td></td>
<td>Multimode 50 µm</td>
<td>66 – 300 m</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10GBASE-LW</td>
<td>Monomode (10 µm)</td>
<td>10 Km</td>
<td>1310 nm</td>
<td>Area</td>
<td>64B/66B SONET/SDH framing</td>
</tr>
<tr>
<td>10GBASE-EW</td>
<td>Monomode (10 µm)</td>
<td>40 Km</td>
<td>1550 nm</td>
<td>Metropolitan</td>
<td>64B/66B SONET/SDH framing</td>
</tr>
</tbody>
</table>
10GBASE-X

- Copper
- Coding derived from 10G FC (Fiber Channel at 10 Gb/s)
- 32 bit blocks are encoded in 4 blocks of 10 bit each
-Sent over 4 lanes
 - 3.125 Gbaud per lane
- Redundancy used for control codes
 - For example idle signal act as inter-frame gap
10GBASE-LX4

- Fiber