Switched LAN Design

Fulvio Risso
Politecnico di Torino
Introduction

- Network is the backbone of all information system
 - If it works, nobody notices it
 - If it doesn’t, everyone complains (also the CEO) and you may be in trouble

- Please note that...
 - If something else doesn’t work properly, the problem will always be the network
 - People never blame servers, applications, ...

- Therefore...
 - Your network must be as good as possible in order to work properly
 - You must clever enough to have data that demonstrate that it is not your fault!
Design criteria

- Focusing on L2 networks

Criteria

- (A) Reliability
- (B) Security
- (C) Performance
- (D) Modularity and extensibility
- (E) Debugging
- (F) Additional features
- (G) Fault tolerance
(A) Reliability (1)

- Good cabling system is a fundamental prerequisite
 - Several faults (usually intermittent and very difficult to diagnose) may arise in case of a poor quality cabling
 - E.g. Are you sure that your cables will follow the shortest path when connecting point A to point B?

- Selection of network devices
 - Different families of network devices, apparently with same characteristics
 - What about redundant modules?
 - What about MTBF?
Reliability (2)

- Observance of standard specifications
 - Do not exceed the known limitations of the standards
 - Cabling
 - Particular attention is needed for fiber-optics backbones
 - Attenuation
 - Number of cascading switches
 - ...

(B) Security

- Network isolation
 - VLANs
 - Access Control Links (at various level)
- 802.1x
(C) Performance

- Two aspects
 - Dimensioning of network devices and link bandwidth
 - Network topology
- In both cases, an accurate traffic study is required
Performance: traffic survey

- Traffic typology
 - Client-server, peer-to-peer
 - Departmental servers, or corporate servers
 - Servers (with higher bandwidth) near users or in datacenter
 - Mostly internal to the LAN, or mostly toward the Internet
- Special events (e.g. corporate-wise conventions)
- Traffic monitoring (over different time scales) may be required
 - In case of new installations, we can try with a traffic survey of some similar companies
Performance: selection of devices / links

- Given the traffic survey, we can choose devices / links

- Selection of network devices
 - Possibility to accommodate fastest network interfaces
 - Internal switching capabilities (frames per second)
 - Attention required for multicast and/or other special traffic
 - Necessity of QoS capabilities (e.g. hw queues on interfaces)

- Links
 - Bandwidth
 - Link aggregation
Performance: dimensioning

- The most common approach is to over-dimension the network...
 - Inexpensive
 - Simplest to achieve
 - Simple to manage
 - No traffic engineering
 - No resource reservation

- ... and setup a continuous monitoring infrastructure in order to detect bottlenecks as soon as possible

- Often the bottleneck is the connection to the Internet, which is usually slower than the internal network
 - Cannot over-dimension the Internet connection due to cost problems
Network topology (1)

- Key decision for achieving performance, reliability, security, fault tolerance
- Unfortunately, often network topology is in some sense forced by some external constraint
 - E.g. location of the wiring cabinets
 - Interior designers seems to have more importance than network engineers
 - Network specialists must do their best anyway
Network topology (2)

- Network performance highly depends on the quality and topology of the underlying cabling system
 - Best choice: design everything at the same time
 - Wiring closets and cabinets
 - Cabling conduits
 - Link/device topology
 - Link/device dimensioning
 - Servers positioning
Logical topology (1)

Core (or backbone)

Distribution and aggregation

Access
Logical topology (2)

- Core/backbone
 - Usually between different buildings in the same campus
 - Usually concentrated in a few switches, connected to the corporate data center

- Distribution/aggregation
 - Usually within the same building (vertical wiring)

- Access
 - Usually connects hosts on the same floor (horizontal wiring)
 - User control (e.g. 802.1x, …)
 - Reliability may not be so important

- In all cases, point-to-point links
Logical topology: backbones

- Star-based system
 - N devices, N-1 links (with no fault tolerance at all)
 - Highly scalable (we can add new links from the star center or upgrade the star center in order to have more bandwidth)

- Ring
 - Very efficient in terms of resiliency
 - “Shared” bandwidth
 - N devices, N links (with resiliency)

- Mesh
 - Usually discouraged
 - Large number of links/devices, no clear outcome of the network in case of fault
 - Difficult to debug
Logical topology and Spanning Tree

- Have you considered that the actual topology depends on the configuration decided by the STP?
 - Customize Bridge ID for better Root bridge selection and Designated Port Selection
 - Do not forget to design the network in order to perform well also in case of the most critical failures (e.g., root bridge)

- PVST may be another option
Logical topology and link speed

- Important to have an adequate difference between access and distribution/core
 - Limits dropped frames in L2 network
 - QoS issues
- Usually, 100Mbps is enough
 - Most people (vendors?) prefer 1Gbps, though
Logical topology: example of a building

- Floor cabinet
- Vertical wiring
- Horizontal wiring
- 1Gbps / 10Gbps
- 100Mbps / 1Gbps
- Data center (CED)
- Multilayer switch
- Router
- Internet

1Gbps / 10Gbps

Internet
(D) Modularity and Extensibility

- Links
 - Link type (e.g. copper, fiber, ...)
 - GBIC, for a better choice of the proper physical technology
 - Other characteristics (e.g. simple fiber, armored fiber, ...)

- Devices
 - Fixed format
 - Chassis-based
 - Hardware-based vs software based
 - Impacts performance as well

- Configurability
 - Fixed features, no field-upgradable operating system
 - Field-upgradable operating system (with new features)
(E) Debugging (1)

First, adopt standard technologies
- The standard specifies how the device should operate
- Required for interoperability as well

Second, be prepared in case users complain about the network
- The network has to be reasonably robust
- We must have debug facilities
 - For debugging the network (and, more important)
 - For debugging servers and clients
- Mirror (also known as “span”) ports are a must
Debugging (2)

- Remember that, in the common belief, the problem is always the network
 - Either in terms of reachability ("I cannot reach my web server") or in terms of performance ("the server is slow")
- Be prepared to demonstrate that it’s not your fault
 - Network traffic live recording
 - In case regulations allow you to do so
 - Monitoring tools
Debugging (3)

- Prevention is better than cure
 - Systems for the management and control of the network for revealing anomalies and faults
 - Otherwise, the fault may happen and it remains unfixed because the network manager does not notice it
 - E.g., automatic network reconvergence (STP)
(F) Additional features

- Power over Ethernet (PoE)
- Quality of Service (QoS)
- VLANs
(G) Fault tolerance

- The network must be able to operate also when facing one or more failures
 - Links
 - Devices
 - Device parts
 - Interfaces
 - Power suppliers
How do we achieve fault tolerance?

- Adding redundancy on critical elements
 - Interface level
 - Parallel interfaces
 - Redundant ports
 - Device level
 - Processor
 - Power supplier
 - NICs
 - Network level
 - Additional links (i.e., alternate paths)
 - Duplicating a device (e.g., a second (backup) switch)
- Combining all of these
- Robust devices, or many devices with backup capabilities?
How much redundancy?

- Each new element has a fault probability and a cost
 - Fault probability of each element must be analyzed carefully
- Too many elements may
 - Increase fault tolerance capabilities marginally
 - Increase costs substantially
- So, better to duplicate only the weakest elements
- Fault tolerance is always a compromise among
 - Real fault tolerance needs
 - How much does it cost to my organization a stop of \(N \) minutes in the network?
 - Please note that a stop of \(N \) min of the network may cause a stop of \(M \) min of some services
 - Cost
The golden rule

The fault tolerant solution must be as simple as possible and use the lowest number of redundant elements required to guarantee a “path” that can replace the faulty one.
Good practices: power

- Redundant devices must have an independent power supply
 - Two power units, connected to different electrical backbones
 - Two independent electrical backbones
- Uninterruptible Power Supply systems for important devices
 - Usually 15-20 minutes with batteries
 - Then, a power generation must be activated
- Power distribution must be done with care
 - Different distribution lines for network and other users (e.g. lights)
 - Are you sure that you have no stoves connected to your distribution line?
 - Multiple lines for network devices for redundancy
 - What about everything under the same differential switch, which may go off?
Good practice: cabinets

- Cabinets and data centers are often in the basement
- Check that everything is safe in case of flooding
 - Do you have water pumps in order to keep your datacenter safe?
Good practice: links

- Redundant links
 - Fiber is better, especially in backbone
 - Copper is an electric conductor
 - Lightning
 - Some electrical cable that goes in touch with networking cables
 - Armored links (if needed)

- Fiber over long distances
 - We may have intermittent problems (link flapping)
 - A de-flapper mechanism may be extremely useful
 - Especially if RSTP is used
Good practice: devices

- Redundant devices (e.g. the star center)
- What about servers?
Good practice: redundant paths

- Link Aggregation (when possible)
- Spanning Tree
 - Network analysis of the topology in case of fault of the most critical links/devices
 - Appropriateness of the resulting topology
 - Customization of BridgeID for Root bridge and backup root bridge
Spanning Tree and Fault Reaction

- Fault Reaction in 50 seconds
 - Is this time appropriate for my network?
 - Re-convergence of other services may be higher than 50s
- In case faster reaction is needed
 - New values for timers
 - Rapid STP
- STP limits
 - Max 7 bridges (also on the topology that comes out after a fault)
 - Single spanning tree (i.e. unused resources)
 - VLANs and MST?
 - L3 routing?
Redundant backbone: example

BP: 24576
BP: 28672

Internet
Conclusions

- Network is the backbone of any information system
- Not easy to design a good network
 - Many different aspects
 - From electrical system, to location of cabinets, to cabling, networking equipment, network topology, network protocols, air conditioning, data centers
 - Perhaps the most difficult problem is to foresee all the possible faults
- Experience matters