Introduction to
Storage Area Network (SAN)

Fulvio Risso

http://staff.polito.it/fulvio.risso/
The path toward datacenters

Historic trends
- From mainframe to client-server (1980 – 2000)
- From client-server to … (2000 -)
 - Peer-to-peer
 - Datacenters
 - Not clear who will be the winner (if there will be a single one)

Datacenter consolidation
- Storage
 - More flexibility in using storage space
 - Disk not tied to computational resources
- Computational resources
 - More flexibility
 - Power consumption
The storage evolution: outline

- Direct Attached Storage (DAS)
- Small Computer System Interface (SCSI)
- Network Attached Storage (NAS)
- Storage Area Network (SAN)

 - SAN architectures
 - Ethernet – TCP/IP
 - I-SCSI
 - FC-IP
 - Fibre Channel
 - Complexities and performances
 - Fibre Channel vs. Ethernet
The storage evolution

- Traditionally each server has exclusive access to storage devices:
 - Directly Attached Storage (DAS)
- Small Computer System Interface (SCSI)
 - Standard which define:
 - Set of commands
 - Protocol for transactions
 - Physical interface
 - Block-oriented, i.e. host’s O.S. see the storage devices like a contiguous sets of fixed data blocks
The storage evolution

- Low latency
 - through disk (~ms) and through cache (~µs)

- Very low error rate
 - Inefficient error recovery

Windows, Unix, Novell, MacOS, ecc.
The storage evolution

- Great difficulties on most important corporate richness’ management: the data
 - Resource administration must be done on each server
 - No optimization
 - Scalability
 - Performance
 - Limited maximum distance between devices
 - Inaccessibility to data during maintenance or in case of server fault
 - Difficult backup management
 - Difficult sharing data among different servers
 - Difficult migrating a server to a more powerful one (either in terms of CPU or storage)

- Requirements:
 - Consolidation of storage resources
 - Centralized management
 - Remote replication of data (disaster recovery)
 - Centralized and transparent backup to LAN and computers
The storage evolution: a two-tier model

Solution:
- Separation between storage devices and computing resource
- Connection realized using network’s technologies
- Different implementations:
 - Costs
 - Performance
Network Attached Storage

- Characteristics
 - Usually a dedicated appliance, with proprietary or heavily optimized operating system
 - High storage capabilities
 - Use of RAID and Hot-Swap to protect data and guarantee continuity of service
 - Reasonably low cost
 - LAN-oriented
- NAS virtualizes *shared disks*
 - It serves *files* over the network, usually LAN (not WAN)
 - Raw file system invisible to client
 - It exports either Microsoft SMB or UNIX NFS data
NAS: the protocol stack

- Tipically TCP/IP over Ethernet
- TCP may introduce a non-negligible performance overhead
 - UDP may also be used
- File exported via NFS, CIFS (or both)
NAS: pro and cons

- Clients do not have full control of the disk
 - Cannot format the disk as they want
 - Cannot manage the disk at the block size (some applications, e.g. Oracle databases, do that for performance reasons)
 - Some features (e.g., checking for concurrent accesses) are always enabled, even if these are not necessary
 - Some applications require local disks for working
 - Cannot boot from a shared disk
 - Oracle DB
 - Swap file

- User manager
 - Controlling accesses means that the NAS must manage user rights and credentials
 - What about is the NAS is in outsourcing? Do I want the SSP to manage my accounts?
NAS: pro and cons

- Computational power required by the NAS appliance
 - Receives file-related request, which have to be remapped in block-related requests
 - User-rights management
- NAS protocol stack not optimized for performance
 - Ethernet and, most important, TCP
- High compatibility
 - Minimal impact on the existing infrastructure
 - All OS are able to mount a shared disk without additional drivers
 - Works also in WAN
Next step: Storage Area Network

- Virtualize physical disks, not logical volumes
 - Access to data through logical blocks and not to file
- Includes a network dedicated to the storage
 - Two-tier model; it may even be a three-tier model
Storage Area Network

- SCSI protocol for end-to-end communication
 - Maintains only the upper layers of the SCSI stack
 - This guarantees compatibility with all the existing SCSI-based applications
 - Minimum impact for DAS to SAN migration
 - Interaction with disks must be similar to the one we had in DAS
 - High speed
 - Low latency
 - Very low error rate
 - We cannot use Ethernet (alone) to build a SAN

- SAN features
 - Compatibility with an high number of nodes
 - Metropolitan distance coverage
 - High reliability and ability to react to failures
JBOD

- Just a Bunch Of Disks
 - A way to reduce costs
- Multiple disks are placed in a special cabinet, which exports a disk whose size is the sum of composing disks
- No RAID used, therefore no data protection
 - Protection can be obtained through data redundancy
 - E.g. Google does not use RAIDs and such and relies on software-managed redundancy
- Very cheap
- Common in SAN
SAN: the protocol stack

- Parallel SCSI
- Fibre Channel
- Fibre Channel (with FCIP)
- iSCSI (with TCP/IP/Ethernet)

SCSI

SAN
SAN on Ethernet – TCP/IP

Pro

- Network simplicity
- Infrastructural and training costs are very low
 - May not be true in some environments
- Prospective evolution uncomparable with respect to whatever rival technology
- May have a single network (instead of LAN + SAN)

Cons

- No guarantees to receive transferred informations
 - Frame loss is, today, a feature of Ethernet functioning
 - Error recovery relies on TCP
 - Timeouts in the order of hundred/thousand of milliseconds
 - TCP hardware implementation is difficult
- No guarantees on latency
Fibre Channel

- Born from the need of a reliable support for serial Ultra3 SCSI
 - Basically, a new physical layer for SCSI
 - Simple data plane (in fact, still SCSI)
- Support high transfer rate
 - 1Gb/s, 2Gb/s, 10Gb/s
- Include a lossless mode
- The control plane is complex
 - New features for managing disks
- Three possible working modes
 - Direct connection (hystoric)
 - Arbitrated loop (hystoric)
 - Mesh network
Fibre Channel: connection modes

- **Direct Connection**
 - Still used as SCSI replacement
- **Ring (Arbitrated Loop)**
 - Up to 127 nodes connected in ring topology physically linked or through hub (better reliability)
 - Historic
- **Meshed network (Switched Fabric)**
 - Switches are linked to nodes and between themselves
 - Full duplex links
Fibre Channel: protocol stack

- SCSI
- IP
- FC-4: ULP Mapping
- FC-3: Common services
- FC-2: Signalling
- FC-1: Transmission
- FC-0: Physical layer
Fibre Channel

- FC-0: Physical interface definition
- FC-1: Encoding and link’s low level control
- FC-2: End to end data transfer protocol
 - Frame format
 - Addressing
 - Segmentation
 - Flow control
 - Error detection/correction
- FC-3: Services common to every port
 - Cryptography
 - Compression
 - Channel bonding
- FC-4: Protocol mapping
 - Mapping between upper layer protocols and the transport layer for the delivery through the the fabric
Fibre Channel: ports

- Exist several kind of ports with specific functioning
 - N_port: HBA (Host Bus Adapter)
 - F_port: switches through HBA
 - E_port: connection between switches (ISL)
 - NL_port, FL_port: loop functioning
Fibre Channel: Addressing

- Address structure
 - Nodes, ports and switches have a unique 64 bit ("World Wide Name") "Name identifier" which is assigned in factory
 - Dynamic assignment of 24 bit address for data exchanges
- Domain_ID from 00h to EFh.
 - Usually one per switch. Assignment managed by a main switch
 - 239 switches supported
 - From F0h to FFh "Well Known Address"
 - Services offered by Fabric
 - Implemented with distributed protocols in the switch internals
- Area_ID e Port_ID assigned to nodes, 65536 nodes per switch.

<table>
<thead>
<tr>
<th>Domain_ID</th>
<th>Area_ID</th>
<th>Port_ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>16</td>
<td>8</td>
</tr>
</tbody>
</table>
Fibre Channel: Routing

- Need to propagate reachability of domains/areas across the fabric

Protocols
- FSPF: Fabric Shortest Path First
 - Link-state protocol similar to OSPF

Routing and Loops
- FC doesn’t have TTL mechanism: infinite loop of packets are possible
- The network convergence must be as fastest as possible
Fibre Channel: communication between nodes

- The communications between two nodes expects the an “exchange” opening
- Each exchange expects half duplex frame “sequences”
- Several kinds of communication
 - Flow control
 - Reservation of resources
 - Guarantee on ordered frame delivery
Fibre Channel

- Flow control
 - End to end
 - Buffer to buffer
 - Credits mechanism

- Problems
 - Deadlock
 - Traffic is blocked on the whole link due to lack of credits
Advanced aspects

- VSAN
 - Like VLAN, but on SAN
 - Interesting for Storage Providers
- Link Aggregation
- Load Balancing
Complexities and performances

- **Frame size**
 - Fibre Channel: 36 byte overhead
 - Ethernet - TCP/IP: 18 Ethernet + 20 IP + 20 TCP + iSCSI or FC-IP

- **Fibre Channel vs. Ethernet**
 - Performances
 - Guarantees
 - Investments protection
 - Developing
 - Prices
 - Different market segments

<table>
<thead>
<tr>
<th>SOF</th>
<th>Header</th>
<th>Opt Hdr</th>
<th>Data</th>
<th>CRC</th>
<th>EOF</th>
</tr>
</thead>
<tbody>
<tr>
<td>(4)</td>
<td>(24)</td>
<td></td>
<td>(from 4 to 2112)</td>
<td>(4)</td>
<td>(4)</td>
</tr>
</tbody>
</table>
Using scenarios

- iSCSI
 - Low cost connection of hosts (Ethernet) to SAN
- FC
 - Connection between servers and disk arrays
- FCIP
 - Connection of SANs through a geographic link
 - Es. Backup or redundancy
Main vendors

- SAN
 - Brocade + McData
 - Cisco

- NAS
 - NetApp
 - HP, Dell

- "turnkey" solutions
 - IBM, EMC
The path toward 10GbE

- A server potentially needs
 - 1 NIC for LAN (usually Ethernet)
 - 1 HBA for storage (usually Fibre Channel)
 - 1 NIC for clustering (usually Infiniband)
 - x2 if we need redundancy

- This solution lead to
 - Unnecessary power consumption
 - A lot of PCI slots
 - A lot of space in racks
 - A lot of cables in datacenters

- Should be nice to have a single NIC for all
 - Ethernet seems to be the obvious choice
 - But the current speed is not enough
10GbE and I/O consolidation

- Ethernet was never an option in large datacenters
 - Limited speed (1Gbps against 2/4 Gbps FC)
 - No reliable delivery (no longer CSMA/CD, but congestions may happen in the network)
 - Datacenter managers were used to the FC management model
 - Not easy for them to switch to Ethernet (they do not know, nor trust, Ethernet)

- 10GbE delivers the required speed
 - Together with the latest version of the PCI Express bus
 - FCoE (next slide)

- Still the problem of reliability
 - Priority Flow Control (i.e., per-priority PAUSE)
 - Currently submitted at IEEE 802.3
 - Lossless behaviour at the network (not link!) level

→ I/O consolidation!
FCoE

- Enables FC frames over Ethernet
 - All FC protocols (e.g. DNS, ...) still active
 - All the tools for provision, manage, etc over FC are still working
 - FC at the logical level
 - Ethernet at the physical level
- Convergent Network Adapter in new hosts
 - Implements NIC + HBA, exported as two different physical adapters at the upper layers
 - Preserves application compatibility
- FCoE and FCIP
 - FCoE is oriented to datacenter environment
 - E.g., FCoE is not routable
The need for virtualization

- Storage virtualization
 - Already addressed by SAN
 - No need to talk more about that

- Computing virtualization
 - Better use of computational resources
 - Energy consumption
Power consumption (1)

- Typically, 5-15% CPU utilization (per server)
- Power consumption vs CPU utilization
Power consumption (2)

- Electrical power
 - Politecnico di Torino (2005): > 3M€

- Power consumption of a single server
 - 10GbE NIC: ~15W (2008)
 - 1TB disk: ~10W idle, ~15W R/W (2008)
 - CPU: may be more than 100W
 - Memory and motherboard: ~25W
 - Idle server: ~ 66% of the peak power
 - OS still running
 - Memory, disks, motherboard, PCI slots, fans still active
 - Power supply
 - Efficiency about 75%, against 98% of the best power supply
Power consumption and conditioning

- Typical consumption per server: ~120W
 - ~10KW per rack
 - Let’s do some math:
 - Rack footprint: 25ft²
 - Power density: 400W/ft² (even more with high-end processors)
 - Typical density for commercial datacenters: 70-150W/ft²
 → racks are only partially occupied by servers...
- Total power consumption must be multiplied by 3
 - Server power + conditioning + overheads

(data 2008)
Virtualization and datacenters

- The “One application per server” rule in datacenters
 - Failure of popular OSes to provide
 - Full configuration isolation
 - E.g. A requires DLL version 1.0, B requires DLL version 2.0
 - Temporal isolation for performance predictability
 - If A is eating all the CPU, performance of B will worsen
 - Strong spatial isolation for security and reliability
 - A crash in A may compromise B
 - True backward app compatibility
 - My Application runs only on OS version X, path Y
 - Or... Sometimes it is certified only in this environment
Virtualization benefits

- Server consolidation
 - Exploit multi-core CPUs
 - Optimize energy consumption
 - Huge savings
- Decoupling physical hardware from logical servers
 - Rapid deployment of new servers
 - Move servers between different hardware
 - Either as image, or with server running (e.g., VMware VMotion)
 - Capability to give more CPU cycles to servers that require more power
 - Dynamic load balancing between server
 - Disaster recovery
 - Either static (move images) or dynamic (replace faulty server)
- Management
 - Secure remote console
 - Reboot / power control
 - Performance monitoring
 - Easier to setup a new server (no need to deal with different physical hardwares)
The Hypervisor

- Hardware is managed by stripped-down OS, the hypervisor
 - Often Linux-based
 - Native drivers manage hardware
 - A virtualization layer exports a set of “standard” devices to the upper-layer OS
 - Usually, we do not virtualize the latest video card
 - However, most important characteristics of the hardware can be exploited “natively”
 - Enable hosted OS to support a limited set of hardware
- The hypervisor may be attacked
 - Although no successful attacks are known right now (2008)
 - Much smaller and more defendible than a conventional OS
Bibliography

Books
- C. Beauchamp, J. Judd, Building SANs with Brocade Fabric Switches, Rockland, MA, USA, Syngress Publishing Inc., 2001

Standard Fibre Channel
- http://www.t11.org/index.htm

Tutorials Fibre Channel
- http://www.fibrechannel.org/OVERVIEW/
- http://www.iol.unh.edu/knowledgeBase/training/fc

Storage over IP

Documentation from the top two vendors of Storage Switch equipments
- http://www.brocade.com/san/resource.jsp